Longping Nie , Yue Sun , Xin Ming , Zhen Xu , Xiangyu Ye , Tao Liu , Xinbo Ding , Lei Du , Jiangtao Xu , Huaizhong Xu
{"title":"高分辨率3D打印应变传感器,具有卓越的拉伸性和灵敏度:揭示熔体电解的潜力","authors":"Longping Nie , Yue Sun , Xin Ming , Zhen Xu , Xiangyu Ye , Tao Liu , Xinbo Ding , Lei Du , Jiangtao Xu , Huaizhong Xu","doi":"10.1016/j.mattod.2025.01.017","DOIUrl":null,"url":null,"abstract":"<div><div>Recently, flexible strain sensors have attracted considerable attention due to their outstanding adaptability in applications such as human motion detection, health monitoring, and human–machine interaction. However, achieving strain sensors that integrate both high sensitivity and extensive stretchability remains a notable challenge. Herein, we employed melt electrowriting (MEW), a cutting-edge additive manufacturing technology, to fabricate a thermoplastic polyurethane (TPU) lattice with high-resolution and precisely designed structures. Subsequently, reduced graphene oxide (rGO) was deposited <em>via</em> layer-by-layer self-assembly to impart conductivity and leverage the substrate’s microstructure. Through optimizing structure and parameters, a flexible strain sensor with a high gauge factor (GF = 3,807.8) and a broad working range (up to 140%) has been achieved, representing an exceptional balance of sensitivity and stretchability. The sensor also shows remarkable durability with stable performance and negligible resistance variation after 5,000 cycles of stretching and releasing at 50% strain. Furthermore, the sensor can accurately detect diverse motions, from subtle swallowing actions to large-scale finger and knee bending, underscoring its significant potential for wearable electronics, and highlighting the transformative role of MEW in advancing this technology.</div></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"84 ","pages":"Pages 39-47"},"PeriodicalIF":21.1000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-resolution 3D printed strain sensor with superb stretchability and sensitivity: Unveiling the potential of melt electrowriting\",\"authors\":\"Longping Nie , Yue Sun , Xin Ming , Zhen Xu , Xiangyu Ye , Tao Liu , Xinbo Ding , Lei Du , Jiangtao Xu , Huaizhong Xu\",\"doi\":\"10.1016/j.mattod.2025.01.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Recently, flexible strain sensors have attracted considerable attention due to their outstanding adaptability in applications such as human motion detection, health monitoring, and human–machine interaction. However, achieving strain sensors that integrate both high sensitivity and extensive stretchability remains a notable challenge. Herein, we employed melt electrowriting (MEW), a cutting-edge additive manufacturing technology, to fabricate a thermoplastic polyurethane (TPU) lattice with high-resolution and precisely designed structures. Subsequently, reduced graphene oxide (rGO) was deposited <em>via</em> layer-by-layer self-assembly to impart conductivity and leverage the substrate’s microstructure. Through optimizing structure and parameters, a flexible strain sensor with a high gauge factor (GF = 3,807.8) and a broad working range (up to 140%) has been achieved, representing an exceptional balance of sensitivity and stretchability. The sensor also shows remarkable durability with stable performance and negligible resistance variation after 5,000 cycles of stretching and releasing at 50% strain. Furthermore, the sensor can accurately detect diverse motions, from subtle swallowing actions to large-scale finger and knee bending, underscoring its significant potential for wearable electronics, and highlighting the transformative role of MEW in advancing this technology.</div></div>\",\"PeriodicalId\":387,\"journal\":{\"name\":\"Materials Today\",\"volume\":\"84 \",\"pages\":\"Pages 39-47\"},\"PeriodicalIF\":21.1000,\"publicationDate\":\"2025-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369702125000318\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369702125000318","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
High-resolution 3D printed strain sensor with superb stretchability and sensitivity: Unveiling the potential of melt electrowriting
Recently, flexible strain sensors have attracted considerable attention due to their outstanding adaptability in applications such as human motion detection, health monitoring, and human–machine interaction. However, achieving strain sensors that integrate both high sensitivity and extensive stretchability remains a notable challenge. Herein, we employed melt electrowriting (MEW), a cutting-edge additive manufacturing technology, to fabricate a thermoplastic polyurethane (TPU) lattice with high-resolution and precisely designed structures. Subsequently, reduced graphene oxide (rGO) was deposited via layer-by-layer self-assembly to impart conductivity and leverage the substrate’s microstructure. Through optimizing structure and parameters, a flexible strain sensor with a high gauge factor (GF = 3,807.8) and a broad working range (up to 140%) has been achieved, representing an exceptional balance of sensitivity and stretchability. The sensor also shows remarkable durability with stable performance and negligible resistance variation after 5,000 cycles of stretching and releasing at 50% strain. Furthermore, the sensor can accurately detect diverse motions, from subtle swallowing actions to large-scale finger and knee bending, underscoring its significant potential for wearable electronics, and highlighting the transformative role of MEW in advancing this technology.
期刊介绍:
Materials Today is the leading journal in the Materials Today family, focusing on the latest and most impactful work in the materials science community. With a reputation for excellence in news and reviews, the journal has now expanded its coverage to include original research and aims to be at the forefront of the field.
We welcome comprehensive articles, short communications, and review articles from established leaders in the rapidly evolving fields of materials science and related disciplines. We strive to provide authors with rigorous peer review, fast publication, and maximum exposure for their work. While we only accept the most significant manuscripts, our speedy evaluation process ensures that there are no unnecessary publication delays.