通过新型二酮衍生物实现高效光酶偶联,扩大酶的作用范围

IF 5.5 Q1 ENGINEERING, CHEMICAL
Wentao Zhang , Shuyu Zhou , Hao Dong , Yifan Yu , Degui Gao , Yue Zhao , Wenguang Huang , Wei Liu , Hui Cheng , Lele Peng , Bingdang Wu
{"title":"通过新型二酮衍生物实现高效光酶偶联,扩大酶的作用范围","authors":"Wentao Zhang ,&nbsp;Shuyu Zhou ,&nbsp;Hao Dong ,&nbsp;Yifan Yu ,&nbsp;Degui Gao ,&nbsp;Yue Zhao ,&nbsp;Wenguang Huang ,&nbsp;Wei Liu ,&nbsp;Hui Cheng ,&nbsp;Lele Peng ,&nbsp;Bingdang Wu","doi":"10.1016/j.ceja.2025.100732","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a novel visible light‑responsive diketone derivative, 3‑terphthalic acid azoacetylacetone (BDC‑AA), designed to extend fungal laccase (EC 1.10.3.2) catalytic activity. Experimental results show that BDC‑AA binds specifically to laccase's substrate binding pocket, enabling efficient electron transfer from the molecule's photoexcited state to the enzyme's T1Cu center. This interaction significantly promotes the oxidation of otherwise non‑native substrates, ethylenediaminetetraacetic acid (EDTA) under visible light irradiation. Molecular docking, fluorescence quenching, and circular dichroism analyses reveal the structural basis of the BDC‑AA–laccase complex, confirming the stability and enhanced electron transfer efficiency. The combined system operates without additional sacrificial agents or cofactors, highlighting a promising avenue for green biocatalysis and environmental remediation applications.</div></div>","PeriodicalId":9749,"journal":{"name":"Chemical Engineering Journal Advances","volume":"22 ","pages":"Article 100732"},"PeriodicalIF":5.5000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Achieving efficient photo-enzyme coupling via a novel diketone derivative to expand the scope of enzyme action\",\"authors\":\"Wentao Zhang ,&nbsp;Shuyu Zhou ,&nbsp;Hao Dong ,&nbsp;Yifan Yu ,&nbsp;Degui Gao ,&nbsp;Yue Zhao ,&nbsp;Wenguang Huang ,&nbsp;Wei Liu ,&nbsp;Hui Cheng ,&nbsp;Lele Peng ,&nbsp;Bingdang Wu\",\"doi\":\"10.1016/j.ceja.2025.100732\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents a novel visible light‑responsive diketone derivative, 3‑terphthalic acid azoacetylacetone (BDC‑AA), designed to extend fungal laccase (EC 1.10.3.2) catalytic activity. Experimental results show that BDC‑AA binds specifically to laccase's substrate binding pocket, enabling efficient electron transfer from the molecule's photoexcited state to the enzyme's T1Cu center. This interaction significantly promotes the oxidation of otherwise non‑native substrates, ethylenediaminetetraacetic acid (EDTA) under visible light irradiation. Molecular docking, fluorescence quenching, and circular dichroism analyses reveal the structural basis of the BDC‑AA–laccase complex, confirming the stability and enhanced electron transfer efficiency. The combined system operates without additional sacrificial agents or cofactors, highlighting a promising avenue for green biocatalysis and environmental remediation applications.</div></div>\",\"PeriodicalId\":9749,\"journal\":{\"name\":\"Chemical Engineering Journal Advances\",\"volume\":\"22 \",\"pages\":\"Article 100732\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Journal Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666821125000298\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666821125000298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种新的可见光响应二酮衍生物,3 -对苯二甲酸偶氮乙酰丙酮(BDC - AA),旨在提高真菌漆酶(EC 1.10.3.2)的催化活性。实验结果表明,BDC - AA特异性地结合到漆酶的底物结合袋上,使电子从分子的光激发态有效地转移到酶的T1Cu中心。这种相互作用在可见光照射下显著促进了非原生底物乙二胺四乙酸(EDTA)的氧化。分子对接、荧光猝灭和圆二色性分析揭示了BDC - aa -漆酶复合物的结构基础,证实了其稳定性和增强的电子传递效率。该组合系统无需额外的牺牲剂或辅助因子,突出了绿色生物催化和环境修复应用的有前途的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Achieving efficient photo-enzyme coupling via a novel diketone derivative to expand the scope of enzyme action

Achieving efficient photo-enzyme coupling via a novel diketone derivative to expand the scope of enzyme action
This study presents a novel visible light‑responsive diketone derivative, 3‑terphthalic acid azoacetylacetone (BDC‑AA), designed to extend fungal laccase (EC 1.10.3.2) catalytic activity. Experimental results show that BDC‑AA binds specifically to laccase's substrate binding pocket, enabling efficient electron transfer from the molecule's photoexcited state to the enzyme's T1Cu center. This interaction significantly promotes the oxidation of otherwise non‑native substrates, ethylenediaminetetraacetic acid (EDTA) under visible light irradiation. Molecular docking, fluorescence quenching, and circular dichroism analyses reveal the structural basis of the BDC‑AA–laccase complex, confirming the stability and enhanced electron transfer efficiency. The combined system operates without additional sacrificial agents or cofactors, highlighting a promising avenue for green biocatalysis and environmental remediation applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Engineering Journal Advances
Chemical Engineering Journal Advances Engineering-Industrial and Manufacturing Engineering
CiteScore
8.30
自引率
0.00%
发文量
213
审稿时长
26 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信