一种可扩展的双活化策略构建具有可调孔孔的杂原子掺杂石墨烯增强超级电容器多孔碳

IF 7.9 2区 工程技术 Q1 CHEMISTRY, PHYSICAL
Hongjie Li , Yanyu Li , Huyan Shen , Majid Shaker , Imran Zada , Shenmin Zhu , Yao Li
{"title":"一种可扩展的双活化策略构建具有可调孔孔的杂原子掺杂石墨烯增强超级电容器多孔碳","authors":"Hongjie Li ,&nbsp;Yanyu Li ,&nbsp;Huyan Shen ,&nbsp;Majid Shaker ,&nbsp;Imran Zada ,&nbsp;Shenmin Zhu ,&nbsp;Yao Li","doi":"10.1016/j.jpowsour.2025.236757","DOIUrl":null,"url":null,"abstract":"<div><div>The development of scalable synthesis methods for heteroatom-doped carbon with tailored pore structures remains a significant challenge. In this study, we present a dual-activation strategy employing KOH and K<sub>3</sub>PO<sub>4</sub> to fabricate heteroatom-doped graphene-reinforced porous carbon with tunable pores (1–4 nm) through electrostatic self-assembly of chitosan and graphene oxide. The optimized material demonstrates a large specific surface area (2672.39 m<sup>2</sup> g<sup>−1</sup>) with dominant (1–4 nm) pores (<em>V</em><sub>(1-4) nm</sub> = 1.23 cm<sup>3</sup> g<sup>−1</sup>, <em>V</em><sub>(1-4) nm</sub>/<em>V</em><sub>t</sub> = 77.36 %) and favorable heteroatom configurations. Electrochemical tests in a three-electrode system demonstrated exceptional performance, including a specific capacitance of 371 F g<sup>−1</sup> at 0.5 A g<sup>−1</sup>, excellent rate capability (266 F g<sup>−1</sup> at 100 A g<sup>−1</sup>), and remarkable cycling stability (98.2 % retention after 50,000 cycles) in 6 M KOH. Symmetric supercapacitors deliver an energy density of 38.9 Wh kg<sup>−1</sup> in 1 M TEABF<sub>4</sub>/AN electrolyte while maintaining 98.5 % capacity retention over 20,000 cycles in 6 M KOH. This study provides novel insights for designing carbon materials with synergistic pore structure and heteroatom engineering for advanced energy storage.</div></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":"640 ","pages":"Article 236757"},"PeriodicalIF":7.9000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A scalable dual activation strategy to construct heteroatom-doped graphene-reinforced porous carbon with tunable pores for supercapacitors\",\"authors\":\"Hongjie Li ,&nbsp;Yanyu Li ,&nbsp;Huyan Shen ,&nbsp;Majid Shaker ,&nbsp;Imran Zada ,&nbsp;Shenmin Zhu ,&nbsp;Yao Li\",\"doi\":\"10.1016/j.jpowsour.2025.236757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The development of scalable synthesis methods for heteroatom-doped carbon with tailored pore structures remains a significant challenge. In this study, we present a dual-activation strategy employing KOH and K<sub>3</sub>PO<sub>4</sub> to fabricate heteroatom-doped graphene-reinforced porous carbon with tunable pores (1–4 nm) through electrostatic self-assembly of chitosan and graphene oxide. The optimized material demonstrates a large specific surface area (2672.39 m<sup>2</sup> g<sup>−1</sup>) with dominant (1–4 nm) pores (<em>V</em><sub>(1-4) nm</sub> = 1.23 cm<sup>3</sup> g<sup>−1</sup>, <em>V</em><sub>(1-4) nm</sub>/<em>V</em><sub>t</sub> = 77.36 %) and favorable heteroatom configurations. Electrochemical tests in a three-electrode system demonstrated exceptional performance, including a specific capacitance of 371 F g<sup>−1</sup> at 0.5 A g<sup>−1</sup>, excellent rate capability (266 F g<sup>−1</sup> at 100 A g<sup>−1</sup>), and remarkable cycling stability (98.2 % retention after 50,000 cycles) in 6 M KOH. Symmetric supercapacitors deliver an energy density of 38.9 Wh kg<sup>−1</sup> in 1 M TEABF<sub>4</sub>/AN electrolyte while maintaining 98.5 % capacity retention over 20,000 cycles in 6 M KOH. This study provides novel insights for designing carbon materials with synergistic pore structure and heteroatom engineering for advanced energy storage.</div></div>\",\"PeriodicalId\":377,\"journal\":{\"name\":\"Journal of Power Sources\",\"volume\":\"640 \",\"pages\":\"Article 236757\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Power Sources\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378775325005932\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775325005932","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

开发具有定制孔结构的杂原子掺杂碳的可扩展合成方法仍然是一个重大挑战。在这项研究中,我们提出了一种双活化策略,利用KOH和K3PO4通过壳聚糖和氧化石墨烯的静电自组装制备具有可调谐孔(1-4 nm)的杂原子掺杂石墨烯增强多孔碳。优化后的材料具有较大的比表面积(2672.39 m2 g−1),优势孔(1-4 nm) (V(1-4) nm = 1.23 cm3 g−1,V(1-4) nm/Vt = 77.36%)和良好的杂原子构型。在三电极系统中进行的电化学测试显示出优异的性能,包括在0.5 a g−1时的比电容为371 F g−1,出色的倍率能力(在100 a g−1时的倍率能力为266 F g−1),以及在6 M KOH中显着的循环稳定性(50,000次循环后保持98.2%)。对称超级电容器在1m TEABF4/ an电解液中提供38.9 Wh kg−1的能量密度,同时在6m KOH中保持98.5%的容量保持超过20,000次循环。该研究为设计具有协同孔隙结构的碳材料和用于先进储能的杂原子工程提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A scalable dual activation strategy to construct heteroatom-doped graphene-reinforced porous carbon with tunable pores for supercapacitors

A scalable dual activation strategy to construct heteroatom-doped graphene-reinforced porous carbon with tunable pores for supercapacitors
The development of scalable synthesis methods for heteroatom-doped carbon with tailored pore structures remains a significant challenge. In this study, we present a dual-activation strategy employing KOH and K3PO4 to fabricate heteroatom-doped graphene-reinforced porous carbon with tunable pores (1–4 nm) through electrostatic self-assembly of chitosan and graphene oxide. The optimized material demonstrates a large specific surface area (2672.39 m2 g−1) with dominant (1–4 nm) pores (V(1-4) nm = 1.23 cm3 g−1, V(1-4) nm/Vt = 77.36 %) and favorable heteroatom configurations. Electrochemical tests in a three-electrode system demonstrated exceptional performance, including a specific capacitance of 371 F g−1 at 0.5 A g−1, excellent rate capability (266 F g−1 at 100 A g−1), and remarkable cycling stability (98.2 % retention after 50,000 cycles) in 6 M KOH. Symmetric supercapacitors deliver an energy density of 38.9 Wh kg−1 in 1 M TEABF4/AN electrolyte while maintaining 98.5 % capacity retention over 20,000 cycles in 6 M KOH. This study provides novel insights for designing carbon materials with synergistic pore structure and heteroatom engineering for advanced energy storage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Power Sources
Journal of Power Sources 工程技术-电化学
CiteScore
16.40
自引率
6.50%
发文量
1249
审稿时长
36 days
期刊介绍: The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells. Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include: • Portable electronics • Electric and Hybrid Electric Vehicles • Uninterruptible Power Supply (UPS) systems • Storage of renewable energy • Satellites and deep space probes • Boats and ships, drones and aircrafts • Wearable energy storage systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信