袋式电池中气体引起的膨胀:一个机械模型

IF 7.9 2区 工程技术 Q1 CHEMISTRY, PHYSICAL
Andrea Giudici, Jon Chapman, Colin Please
{"title":"袋式电池中气体引起的膨胀:一个机械模型","authors":"Andrea Giudici,&nbsp;Jon Chapman,&nbsp;Colin Please","doi":"10.1016/j.jpowsour.2025.236553","DOIUrl":null,"url":null,"abstract":"<div><div>Over the long timescale of many charge/discharge cycles, gas formation can result in large bulging deformations of a Lithium-ion pouch cell, which is a key failure mechanism in batteries. Guided by recent experimental X-ray tomography data of a bulging cell, we propose a homogenised mechanical model to predict the shape of the deformation and the stress distribution analytically. Our model can be included in battery simulation models to capture the effects of mechanical degradation. Furthermore, with knowledge of the bending stiffness of the cathode electrodes and current collectors, and by fitting our model to experimental data, we can predict the internal pressure and the amount of gas in the battery, thus assisting in monitoring the state of health (SOH) of the cell without breaking the sealed case.</div></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":"640 ","pages":"Article 236553"},"PeriodicalIF":7.9000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gas-induced bulging in pouch-cell batteries: A mechanical model\",\"authors\":\"Andrea Giudici,&nbsp;Jon Chapman,&nbsp;Colin Please\",\"doi\":\"10.1016/j.jpowsour.2025.236553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Over the long timescale of many charge/discharge cycles, gas formation can result in large bulging deformations of a Lithium-ion pouch cell, which is a key failure mechanism in batteries. Guided by recent experimental X-ray tomography data of a bulging cell, we propose a homogenised mechanical model to predict the shape of the deformation and the stress distribution analytically. Our model can be included in battery simulation models to capture the effects of mechanical degradation. Furthermore, with knowledge of the bending stiffness of the cathode electrodes and current collectors, and by fitting our model to experimental data, we can predict the internal pressure and the amount of gas in the battery, thus assisting in monitoring the state of health (SOH) of the cell without breaking the sealed case.</div></div>\",\"PeriodicalId\":377,\"journal\":{\"name\":\"Journal of Power Sources\",\"volume\":\"640 \",\"pages\":\"Article 236553\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Power Sources\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378775325003891\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775325003891","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在长时间的多次充放电循环中,气体的形成会导致锂离子袋状电池出现较大的胀形变形,这是电池失效的关键机制。在最近的实验x射线断层扫描数据的指导下,我们提出了一个均匀的力学模型来分析预测变形的形状和应力分布。我们的模型可以包含在电池仿真模型中,以捕获机械退化的影响。此外,通过了解阴极电极和集流器的弯曲刚度,并通过将我们的模型拟合到实验数据,我们可以预测电池的内部压力和气体量,从而帮助监测电池的健康状态(SOH),而不会破坏密封的外壳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gas-induced bulging in pouch-cell batteries: A mechanical model
Over the long timescale of many charge/discharge cycles, gas formation can result in large bulging deformations of a Lithium-ion pouch cell, which is a key failure mechanism in batteries. Guided by recent experimental X-ray tomography data of a bulging cell, we propose a homogenised mechanical model to predict the shape of the deformation and the stress distribution analytically. Our model can be included in battery simulation models to capture the effects of mechanical degradation. Furthermore, with knowledge of the bending stiffness of the cathode electrodes and current collectors, and by fitting our model to experimental data, we can predict the internal pressure and the amount of gas in the battery, thus assisting in monitoring the state of health (SOH) of the cell without breaking the sealed case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Power Sources
Journal of Power Sources 工程技术-电化学
CiteScore
16.40
自引率
6.50%
发文量
1249
审稿时长
36 days
期刊介绍: The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells. Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include: • Portable electronics • Electric and Hybrid Electric Vehicles • Uninterruptible Power Supply (UPS) systems • Storage of renewable energy • Satellites and deep space probes • Boats and ships, drones and aircrafts • Wearable energy storage systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信