考虑滞后效应和温度的锂离子电池模型参数和荷电状态多尺度联合估计方法

IF 5 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Xinhui Zhang , Wenyuan Bai , Shuyu Xie , Jiatong Wang , Danny Sutanto , Kashem M. Muttaqi
{"title":"考虑滞后效应和温度的锂离子电池模型参数和荷电状态多尺度联合估计方法","authors":"Xinhui Zhang ,&nbsp;Wenyuan Bai ,&nbsp;Shuyu Xie ,&nbsp;Jiatong Wang ,&nbsp;Danny Sutanto ,&nbsp;Kashem M. Muttaqi","doi":"10.1016/j.ijepes.2025.110618","DOIUrl":null,"url":null,"abstract":"<div><div>Precise estimating of the state of charge (SOC) in lithium-ion (Li-ion) batteries is crucial for effective energy management and safety assurance in electric vehicles. This paper proposes a novel multi-scale joint estimation method for model parameters and SOC to enhance estimation accuracy under temperature variations and hysteresis effects. First, an improved second-order RC equivalent circuit model is developed by incorporating temperature dependencies and hysteresis effects, where the hysteresis parameters are calibrated offline using a data-driven approach. Then, the joint estimation approach employs an adaptive forgetting factor recursive least squares (AFFRLS) algorithm to dynamically update model parameters during SOC estimation, thereby maintaining model fidelity across diverse temperature conditions (−10 °C to 50 °C). Finally, an extended Kalman filter (EKF) is implemented for SOC estimation based on the real-time updated model parameters. Experimental validation under DST, US06, and FUDS conditions demonstrates the effectiveness of the proposed method, achieving a maximum voltage prediction error of 0.0650 and a maximum SOC estimation error of 0.0092 across the full temperature range.</div></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":"167 ","pages":"Article 110618"},"PeriodicalIF":5.0000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel Multi-Scale joint approach for estimating Lithium-ion battery model parameters and SOC considering hysteresis effect and temperature\",\"authors\":\"Xinhui Zhang ,&nbsp;Wenyuan Bai ,&nbsp;Shuyu Xie ,&nbsp;Jiatong Wang ,&nbsp;Danny Sutanto ,&nbsp;Kashem M. Muttaqi\",\"doi\":\"10.1016/j.ijepes.2025.110618\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Precise estimating of the state of charge (SOC) in lithium-ion (Li-ion) batteries is crucial for effective energy management and safety assurance in electric vehicles. This paper proposes a novel multi-scale joint estimation method for model parameters and SOC to enhance estimation accuracy under temperature variations and hysteresis effects. First, an improved second-order RC equivalent circuit model is developed by incorporating temperature dependencies and hysteresis effects, where the hysteresis parameters are calibrated offline using a data-driven approach. Then, the joint estimation approach employs an adaptive forgetting factor recursive least squares (AFFRLS) algorithm to dynamically update model parameters during SOC estimation, thereby maintaining model fidelity across diverse temperature conditions (−10 °C to 50 °C). Finally, an extended Kalman filter (EKF) is implemented for SOC estimation based on the real-time updated model parameters. Experimental validation under DST, US06, and FUDS conditions demonstrates the effectiveness of the proposed method, achieving a maximum voltage prediction error of 0.0650 and a maximum SOC estimation error of 0.0092 across the full temperature range.</div></div>\",\"PeriodicalId\":50326,\"journal\":{\"name\":\"International Journal of Electrical Power & Energy Systems\",\"volume\":\"167 \",\"pages\":\"Article 110618\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical Power & Energy Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142061525001693\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical Power & Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142061525001693","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

准确估计锂离子电池的荷电状态(SOC)对于电动汽车有效的能量管理和安全保障至关重要。为了提高模型参数和SOC在温度变化和滞后效应下的估计精度,提出了一种新的模型参数和SOC多尺度联合估计方法。首先,通过结合温度依赖性和迟滞效应,开发了改进的二阶RC等效电路模型,其中使用数据驱动方法离线校准迟滞参数。然后,联合估计方法采用自适应遗忘因子递归最小二乘(AFFRLS)算法在SOC估计过程中动态更新模型参数,从而在不同温度条件下(- 10°C至50°C)保持模型保真度。最后,基于实时更新的模型参数,实现了扩展卡尔曼滤波器(EKF)的SOC估计。在DST、US06和FUDS条件下的实验验证表明了该方法的有效性,在整个温度范围内,最大电压预测误差为0.0650,最大SOC估计误差为0.0092。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Novel Multi-Scale joint approach for estimating Lithium-ion battery model parameters and SOC considering hysteresis effect and temperature
Precise estimating of the state of charge (SOC) in lithium-ion (Li-ion) batteries is crucial for effective energy management and safety assurance in electric vehicles. This paper proposes a novel multi-scale joint estimation method for model parameters and SOC to enhance estimation accuracy under temperature variations and hysteresis effects. First, an improved second-order RC equivalent circuit model is developed by incorporating temperature dependencies and hysteresis effects, where the hysteresis parameters are calibrated offline using a data-driven approach. Then, the joint estimation approach employs an adaptive forgetting factor recursive least squares (AFFRLS) algorithm to dynamically update model parameters during SOC estimation, thereby maintaining model fidelity across diverse temperature conditions (−10 °C to 50 °C). Finally, an extended Kalman filter (EKF) is implemented for SOC estimation based on the real-time updated model parameters. Experimental validation under DST, US06, and FUDS conditions demonstrates the effectiveness of the proposed method, achieving a maximum voltage prediction error of 0.0650 and a maximum SOC estimation error of 0.0092 across the full temperature range.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Electrical Power & Energy Systems
International Journal of Electrical Power & Energy Systems 工程技术-工程:电子与电气
CiteScore
12.10
自引率
17.30%
发文量
1022
审稿时长
51 days
期刊介绍: The journal covers theoretical developments in electrical power and energy systems and their applications. The coverage embraces: generation and network planning; reliability; long and short term operation; expert systems; neural networks; object oriented systems; system control centres; database and information systems; stock and parameter estimation; system security and adequacy; network theory, modelling and computation; small and large system dynamics; dynamic model identification; on-line control including load and switching control; protection; distribution systems; energy economics; impact of non-conventional systems; and man-machine interfaces. As well as original research papers, the journal publishes short contributions, book reviews and conference reports. All papers are peer-reviewed by at least two referees.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信