利用混合机器学习模型和CMIP6气候预测预测孟加拉国丘陵地区的城市山体滑坡

Md․ Ashraful Islam , Musabbir Ahmed Arrafi , Mehedi Hasan Peas , Tanvir Hossain , Md Mehedi Hasan , Sanzida Murshed , Monira Jahan Tania
{"title":"利用混合机器学习模型和CMIP6气候预测预测孟加拉国丘陵地区的城市山体滑坡","authors":"Md․ Ashraful Islam ,&nbsp;Musabbir Ahmed Arrafi ,&nbsp;Mehedi Hasan Peas ,&nbsp;Tanvir Hossain ,&nbsp;Md Mehedi Hasan ,&nbsp;Sanzida Murshed ,&nbsp;Monira Jahan Tania","doi":"10.1016/j.geogeo.2025.100354","DOIUrl":null,"url":null,"abstract":"<div><div>Landslides pose significant risks to infrastructure and human lives in cities, exacerbated by climate change. Therefore, a reliable predictive landslide model is crucial for mitigation, especially in resource-limited nations. This study employs hybrid machine learning (ML) techniques and climate projections to predict landslides in the Chattogram development area (CDA) of Bangladesh – a rapidly growing urban city in Bangladesh. The model was trained using diverse geospatial parameters including topographical, hydrological, soil, and geological parameters, along with an updated landslide inventory, enabling spatially explicit predictions of landslide susceptibility. To incorporate future climate scenarios, we utilized the Coupled Model Intercomparison Project Phase 6 (CMIP6) Global Climate Model (GCM), projecting climate impacts under SSP1-2.6 and SSP5-8.5 scenarios for the periods of 2021–2040, 2041–2060, 2061–2080, and 2081–2100, respectively. These scenarios reflect different pathways of greenhouse gas emissions, providing a range of possible future climate conditions. We tested six ML classifiers: random forest (RF), extra trees (ExT), support vector machine (SVM), logistic regression (LR), Bernoulli Naïve Bayes (bNB), and K-nearest neighbor (KNN). Each base model demonstrated high accuracy (&gt;90 %) but combining them improved both accuracy and computational efficiency. The LR-bNB hybrid model outperformed all others, effectively mapping landslide susceptibility in the study area for the current timeframe and future projections. Our results revealed significant variability in landslide-prone areas across the area, with 12 % of the region categorized as high to very high risk, a figure that slightly rises with predicted increased rainfall due to climate change. The present study demonstrates the efficacy of a hybrid ML model for nowcasting as well as forecasting landslide susceptibility under future climate scenarios. These findings offer valuable insights for proactive risk management and infrastructure planning in the CDA, helping to safeguard communities and improve resilience against future landslide events.</div></div>","PeriodicalId":100582,"journal":{"name":"Geosystems and Geoenvironment","volume":"4 2","pages":"Article 100354"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting urban landslides in the hilly regions of Bangladesh leveraging a hybrid machine learning model and CMIP6 climate projections\",\"authors\":\"Md․ Ashraful Islam ,&nbsp;Musabbir Ahmed Arrafi ,&nbsp;Mehedi Hasan Peas ,&nbsp;Tanvir Hossain ,&nbsp;Md Mehedi Hasan ,&nbsp;Sanzida Murshed ,&nbsp;Monira Jahan Tania\",\"doi\":\"10.1016/j.geogeo.2025.100354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Landslides pose significant risks to infrastructure and human lives in cities, exacerbated by climate change. Therefore, a reliable predictive landslide model is crucial for mitigation, especially in resource-limited nations. This study employs hybrid machine learning (ML) techniques and climate projections to predict landslides in the Chattogram development area (CDA) of Bangladesh – a rapidly growing urban city in Bangladesh. The model was trained using diverse geospatial parameters including topographical, hydrological, soil, and geological parameters, along with an updated landslide inventory, enabling spatially explicit predictions of landslide susceptibility. To incorporate future climate scenarios, we utilized the Coupled Model Intercomparison Project Phase 6 (CMIP6) Global Climate Model (GCM), projecting climate impacts under SSP1-2.6 and SSP5-8.5 scenarios for the periods of 2021–2040, 2041–2060, 2061–2080, and 2081–2100, respectively. These scenarios reflect different pathways of greenhouse gas emissions, providing a range of possible future climate conditions. We tested six ML classifiers: random forest (RF), extra trees (ExT), support vector machine (SVM), logistic regression (LR), Bernoulli Naïve Bayes (bNB), and K-nearest neighbor (KNN). Each base model demonstrated high accuracy (&gt;90 %) but combining them improved both accuracy and computational efficiency. The LR-bNB hybrid model outperformed all others, effectively mapping landslide susceptibility in the study area for the current timeframe and future projections. Our results revealed significant variability in landslide-prone areas across the area, with 12 % of the region categorized as high to very high risk, a figure that slightly rises with predicted increased rainfall due to climate change. The present study demonstrates the efficacy of a hybrid ML model for nowcasting as well as forecasting landslide susceptibility under future climate scenarios. These findings offer valuable insights for proactive risk management and infrastructure planning in the CDA, helping to safeguard communities and improve resilience against future landslide events.</div></div>\",\"PeriodicalId\":100582,\"journal\":{\"name\":\"Geosystems and Geoenvironment\",\"volume\":\"4 2\",\"pages\":\"Article 100354\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geosystems and Geoenvironment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772883825000044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geosystems and Geoenvironment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772883825000044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

山体滑坡对城市的基础设施和人类生命构成重大风险,而气候变化又加剧了这一风险。因此,一个可靠的滑坡预测模型对于减轻灾害至关重要,尤其是在资源有限的国家。本研究采用混合机器学习(ML)技术和气候预测来预测孟加拉国 Chattogram 发展区(CDA)的滑坡,该发展区是孟加拉国一个快速发展的城市。该模型使用多种地理空间参数(包括地形、水文、土壤和地质参数)以及更新的滑坡清单进行训练,从而能够在空间上明确预测滑坡的易发性。为纳入未来气候情景,我们利用耦合模式相互比较项目第 6 阶段(CMIP6)全球气候模式(GCM),分别预测了 2021-2040 年、2041-2060 年、2061-2080 年和 2081-2100 年期间 SSP1-2.6 和 SSP5-8.5 情景下的气候影响。这些情景反映了不同的温室气体排放路径,提供了一系列可能的未来气候条件。我们测试了六种 ML 分类器:随机森林 (RF)、额外树 (ExT)、支持向量机 (SVM)、逻辑回归 (LR)、伯努利奈夫贝叶斯 (bNB) 和 K 近邻 (KNN)。每个基本模型都表现出很高的准确率(90%),但将它们结合起来,准确率和计算效率都得到了提高。LR-bNB 混合模型的表现优于其他所有模型,能有效地绘制出研究区域当前时间框架和未来预测的滑坡易感性图。我们的研究结果表明,整个地区的滑坡易发区存在显著差异,其中 12% 的区域被归类为高风险或极高风险区域,随着气候变化导致的降雨量增加,这一数字将略有上升。本研究证明了混合 ML 模型在预测未来气候情景下的山体滑坡易发性方面的有效性。这些研究结果为中国加速发展区的前瞻性风险管理和基础设施规划提供了宝贵的见解,有助于保护社区和提高应对未来滑坡事件的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Predicting urban landslides in the hilly regions of Bangladesh leveraging a hybrid machine learning model and CMIP6 climate projections

Predicting urban landslides in the hilly regions of Bangladesh leveraging a hybrid machine learning model and CMIP6 climate projections
Landslides pose significant risks to infrastructure and human lives in cities, exacerbated by climate change. Therefore, a reliable predictive landslide model is crucial for mitigation, especially in resource-limited nations. This study employs hybrid machine learning (ML) techniques and climate projections to predict landslides in the Chattogram development area (CDA) of Bangladesh – a rapidly growing urban city in Bangladesh. The model was trained using diverse geospatial parameters including topographical, hydrological, soil, and geological parameters, along with an updated landslide inventory, enabling spatially explicit predictions of landslide susceptibility. To incorporate future climate scenarios, we utilized the Coupled Model Intercomparison Project Phase 6 (CMIP6) Global Climate Model (GCM), projecting climate impacts under SSP1-2.6 and SSP5-8.5 scenarios for the periods of 2021–2040, 2041–2060, 2061–2080, and 2081–2100, respectively. These scenarios reflect different pathways of greenhouse gas emissions, providing a range of possible future climate conditions. We tested six ML classifiers: random forest (RF), extra trees (ExT), support vector machine (SVM), logistic regression (LR), Bernoulli Naïve Bayes (bNB), and K-nearest neighbor (KNN). Each base model demonstrated high accuracy (>90 %) but combining them improved both accuracy and computational efficiency. The LR-bNB hybrid model outperformed all others, effectively mapping landslide susceptibility in the study area for the current timeframe and future projections. Our results revealed significant variability in landslide-prone areas across the area, with 12 % of the region categorized as high to very high risk, a figure that slightly rises with predicted increased rainfall due to climate change. The present study demonstrates the efficacy of a hybrid ML model for nowcasting as well as forecasting landslide susceptibility under future climate scenarios. These findings offer valuable insights for proactive risk management and infrastructure planning in the CDA, helping to safeguard communities and improve resilience against future landslide events.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信