卫星数据驱动下复杂熔岩流模拟的马尔可夫链蒙特卡罗方法

IF 4.8 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Francesco Zuccarello, Giuseppe Bilotta, Flavio Cannavò, Annalisa Cappello, Roberto Guardo, Gaetana Ganci
{"title":"卫星数据驱动下复杂熔岩流模拟的马尔可夫链蒙特卡罗方法","authors":"Francesco Zuccarello,&nbsp;Giuseppe Bilotta,&nbsp;Flavio Cannavò,&nbsp;Annalisa Cappello,&nbsp;Roberto Guardo,&nbsp;Gaetana Ganci","doi":"10.1016/j.envsoft.2025.106426","DOIUrl":null,"url":null,"abstract":"<div><div>We present a novel optimization strategy for the numerical simulation of lava flows that automatically find the best combination of input parameters to fit observed flows considering their uncertainties. The approach is based on the Metropolis algorithm, a Monte Carlo Markov Chain (MCMC) method that performs a sequence of simulations aiming to refine the sampling of unknown parameters to determine their probability distributions. Using this algorithm, we predict the most likely path of lava flows during ongoing eruptions, taking input parameters such as vent locations and Time Average Discharge Rates from satellite imagery. The approach has been validated against synthetic tests on an inclined plane and the 27 February–01 March 2017 eruption at Mt. Etna. This method is the first attempt to use a MCMC method for lava flow modeling, providing several advantages in constraining best-fit values in high-dimensional spaces with complex likelihood functions.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"188 ","pages":"Article 106426"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Markov Chain Monte Carlo approach for complex lava flow simulations driven by satellite-derived data\",\"authors\":\"Francesco Zuccarello,&nbsp;Giuseppe Bilotta,&nbsp;Flavio Cannavò,&nbsp;Annalisa Cappello,&nbsp;Roberto Guardo,&nbsp;Gaetana Ganci\",\"doi\":\"10.1016/j.envsoft.2025.106426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We present a novel optimization strategy for the numerical simulation of lava flows that automatically find the best combination of input parameters to fit observed flows considering their uncertainties. The approach is based on the Metropolis algorithm, a Monte Carlo Markov Chain (MCMC) method that performs a sequence of simulations aiming to refine the sampling of unknown parameters to determine their probability distributions. Using this algorithm, we predict the most likely path of lava flows during ongoing eruptions, taking input parameters such as vent locations and Time Average Discharge Rates from satellite imagery. The approach has been validated against synthetic tests on an inclined plane and the 27 February–01 March 2017 eruption at Mt. Etna. This method is the first attempt to use a MCMC method for lava flow modeling, providing several advantages in constraining best-fit values in high-dimensional spaces with complex likelihood functions.</div></div>\",\"PeriodicalId\":310,\"journal\":{\"name\":\"Environmental Modelling & Software\",\"volume\":\"188 \",\"pages\":\"Article 106426\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Modelling & Software\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364815225001100\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815225001100","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的熔岩流数值模拟优化策略,该策略可以自动找到最适合观测流的输入参数组合。该方法基于Metropolis算法,这是一种蒙特卡罗马尔可夫链(MCMC)方法,该方法执行一系列模拟,旨在改进未知参数的采样,以确定其概率分布。使用这个算法,我们预测在持续喷发期间最可能的熔岩流动路径,输入参数,如喷口位置和卫星图像中的时间平均排放率。该方法已在斜面和2017年2月27日至3月1日埃特纳火山喷发的综合测试中得到验证。该方法首次尝试使用MCMC方法进行熔岩流建模,在具有复杂似然函数的高维空间中约束最佳拟合值方面具有若干优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Markov Chain Monte Carlo approach for complex lava flow simulations driven by satellite-derived data

A Markov Chain Monte Carlo approach for complex lava flow simulations driven by satellite-derived data
We present a novel optimization strategy for the numerical simulation of lava flows that automatically find the best combination of input parameters to fit observed flows considering their uncertainties. The approach is based on the Metropolis algorithm, a Monte Carlo Markov Chain (MCMC) method that performs a sequence of simulations aiming to refine the sampling of unknown parameters to determine their probability distributions. Using this algorithm, we predict the most likely path of lava flows during ongoing eruptions, taking input parameters such as vent locations and Time Average Discharge Rates from satellite imagery. The approach has been validated against synthetic tests on an inclined plane and the 27 February–01 March 2017 eruption at Mt. Etna. This method is the first attempt to use a MCMC method for lava flow modeling, providing several advantages in constraining best-fit values in high-dimensional spaces with complex likelihood functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Modelling & Software
Environmental Modelling & Software 工程技术-工程:环境
CiteScore
9.30
自引率
8.20%
发文量
241
审稿时长
60 days
期刊介绍: Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信