关于域的极大点空间的两个问题的答案

IF 0.6 4区 数学 Q3 MATHEMATICS
Xiaoyong Xi , Chong Shen , Dongsheng Zhao
{"title":"关于域的极大点空间的两个问题的答案","authors":"Xiaoyong Xi ,&nbsp;Chong Shen ,&nbsp;Dongsheng Zhao","doi":"10.1016/j.topol.2025.109340","DOIUrl":null,"url":null,"abstract":"<div><div>A topological space is domain-representable (or, has a domain model) if it is homeomorphic to the maximal point space <span><math><mtext>Max</mtext><mo>(</mo><mi>P</mi><mo>)</mo></math></span> of a domain <em>P</em> (with the relative Scott topology). We first construct an example to show that the set of maximal points of an ideal domain <em>P</em> need not be a <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>δ</mi></mrow></msub></math></span>-set in the Scott space Σ<em>P</em>, thereby answering an open problem from Martin (2003). In addition, Bennett and Lutzer (2009) asked whether <em>X</em> and <em>Y</em> are domain-representable if their product space <span><math><mi>X</mi><mo>×</mo><mi>Y</mi></math></span> is domain-representable. This problem was first solved by Önal and Vural (2015). In this paper, we provide a new approach to Bennett and Lutzer's problem.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"367 ","pages":"Article 109340"},"PeriodicalIF":0.6000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The answers to two problems on maximal point spaces of domains\",\"authors\":\"Xiaoyong Xi ,&nbsp;Chong Shen ,&nbsp;Dongsheng Zhao\",\"doi\":\"10.1016/j.topol.2025.109340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A topological space is domain-representable (or, has a domain model) if it is homeomorphic to the maximal point space <span><math><mtext>Max</mtext><mo>(</mo><mi>P</mi><mo>)</mo></math></span> of a domain <em>P</em> (with the relative Scott topology). We first construct an example to show that the set of maximal points of an ideal domain <em>P</em> need not be a <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>δ</mi></mrow></msub></math></span>-set in the Scott space Σ<em>P</em>, thereby answering an open problem from Martin (2003). In addition, Bennett and Lutzer (2009) asked whether <em>X</em> and <em>Y</em> are domain-representable if their product space <span><math><mi>X</mi><mo>×</mo><mi>Y</mi></math></span> is domain-representable. This problem was first solved by Önal and Vural (2015). In this paper, we provide a new approach to Bennett and Lutzer's problem.</div></div>\",\"PeriodicalId\":51201,\"journal\":{\"name\":\"Topology and its Applications\",\"volume\":\"367 \",\"pages\":\"Article 109340\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166864125001385\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166864125001385","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

如果拓扑空间与域P(具有相对Scott拓扑)的最大点空间Max(P)同胚,则拓扑空间是域可表示的(或具有域模型)。我们首先构造了一个例子来证明理想域P的极大点集合不必是Scott空间ΣP中的g δ集,从而回答了Martin(2003)的一个开放问题。此外,Bennett和Lutzer(2009)提出,如果X和Y的产品空间X×Y是领域可表征的,那么它们是否具有领域可表征性。这个问题首先由Önal和Vural(2015)解决。在本文中,我们为Bennett和Lutzer的问题提供了一个新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The answers to two problems on maximal point spaces of domains
A topological space is domain-representable (or, has a domain model) if it is homeomorphic to the maximal point space Max(P) of a domain P (with the relative Scott topology). We first construct an example to show that the set of maximal points of an ideal domain P need not be a Gδ-set in the Scott space ΣP, thereby answering an open problem from Martin (2003). In addition, Bennett and Lutzer (2009) asked whether X and Y are domain-representable if their product space X×Y is domain-representable. This problem was first solved by Önal and Vural (2015). In this paper, we provide a new approach to Bennett and Lutzer's problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
33.30%
发文量
251
审稿时长
6 months
期刊介绍: Topology and its Applications is primarily concerned with publishing original research papers of moderate length. However, a limited number of carefully selected survey or expository papers are also included. The mathematical focus of the journal is that suggested by the title: Research in Topology. It is felt that it is inadvisable to attempt a definitive description of topology as understood for this journal. Certainly the subject includes the algebraic, general, geometric, and set-theoretic facets of topology as well as areas of interactions between topology and other mathematical disciplines, e.g. topological algebra, topological dynamics, functional analysis, category theory. Since the roles of various aspects of topology continue to change, the non-specific delineation of topics serves to reflect the current state of research in topology. At regular intervals, the journal publishes a section entitled Open Problems in Topology, edited by J. van Mill and G.M. Reed. This is a status report on the 1100 problems listed in the book of the same name published by North-Holland in 1990, edited by van Mill and Reed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信