同步钙钛矿结晶调控和埋藏界面改性提高了平面无机钙钛矿太阳能电池的稳定性和效率

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Long Cheng, Chunshu Song, Hanqing Liu, Dongsheng Wang, Fanning Meng and Guiqiang Wang*, 
{"title":"同步钙钛矿结晶调控和埋藏界面改性提高了平面无机钙钛矿太阳能电池的稳定性和效率","authors":"Long Cheng,&nbsp;Chunshu Song,&nbsp;Hanqing Liu,&nbsp;Dongsheng Wang,&nbsp;Fanning Meng and Guiqiang Wang*,&nbsp;","doi":"10.1021/acsami.5c0113010.1021/acsami.5c01130","DOIUrl":null,"url":null,"abstract":"<p >The numerous defects in inorganic perovskites and inferior buried interfaces result in serious nonradiative recombination and energy loss, exacerbating the deterioration of the performance of inorganic perovskite solar cells. Here, we develop a facile strategy to simultaneously improve CsPbIBr<sub>2</sub> perovskite quality by regulating perovskite crystallization and modify the buried interface by forming a 6-aminonicotinic acid (6AA) molecular interlayer through adding 6AA into a CsPbIBr<sub>2</sub> precursor solution. It is found that adding 6AA into the CsPbIBr<sub>2</sub> precursor effectively regulates the crystallization process of CsPbIBr<sub>2</sub> perovskite because 6AA molecules exhibit a strong intermolecular interaction with CsPbIBr<sub>2</sub> precursor components, resulting in forming a compact CsPbIBr<sub>2</sub> perovskite film with improved morphology and decreased defects. Meanwhile, 6AA molecules are pushed downward during the perovskite crystallization process and accumulate at the buried interface to form the 6AA interlayer, which improves the interface contact and enhances the charge transport at the buried interface. The perovskite quality improvement and the buried interface modification effectively decrease the nonradiative recombination and interface charge loss. Consequently, the fabricated planar carbon-based CsPbIBr<sub>2</sub> solar cell demonstrates an efficiency of 10.97% with a remarkably promoted long-term stability.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"17 11","pages":"17135–17142 17135–17142"},"PeriodicalIF":8.2000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synchronous Perovskite Crystallization Regulation and Buried Interface Modification Improve the Stability and Efficiency of a Planar Inorganic Perovskite Solar Cell\",\"authors\":\"Long Cheng,&nbsp;Chunshu Song,&nbsp;Hanqing Liu,&nbsp;Dongsheng Wang,&nbsp;Fanning Meng and Guiqiang Wang*,&nbsp;\",\"doi\":\"10.1021/acsami.5c0113010.1021/acsami.5c01130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The numerous defects in inorganic perovskites and inferior buried interfaces result in serious nonradiative recombination and energy loss, exacerbating the deterioration of the performance of inorganic perovskite solar cells. Here, we develop a facile strategy to simultaneously improve CsPbIBr<sub>2</sub> perovskite quality by regulating perovskite crystallization and modify the buried interface by forming a 6-aminonicotinic acid (6AA) molecular interlayer through adding 6AA into a CsPbIBr<sub>2</sub> precursor solution. It is found that adding 6AA into the CsPbIBr<sub>2</sub> precursor effectively regulates the crystallization process of CsPbIBr<sub>2</sub> perovskite because 6AA molecules exhibit a strong intermolecular interaction with CsPbIBr<sub>2</sub> precursor components, resulting in forming a compact CsPbIBr<sub>2</sub> perovskite film with improved morphology and decreased defects. Meanwhile, 6AA molecules are pushed downward during the perovskite crystallization process and accumulate at the buried interface to form the 6AA interlayer, which improves the interface contact and enhances the charge transport at the buried interface. The perovskite quality improvement and the buried interface modification effectively decrease the nonradiative recombination and interface charge loss. Consequently, the fabricated planar carbon-based CsPbIBr<sub>2</sub> solar cell demonstrates an efficiency of 10.97% with a remarkably promoted long-term stability.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"17 11\",\"pages\":\"17135–17142 17135–17142\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsami.5c01130\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.5c01130","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

无机钙钛矿中大量的缺陷和低劣的埋藏界面导致了严重的非辐射复合和能量损失,加剧了无机钙钛矿太阳能电池性能的恶化。本研究通过在CsPbIBr2前驱体溶液中加入6AA,形成6-氨基烟酸(6AA)分子中间层,同时通过调节钙钛矿结晶来改善CsPbIBr2钙钛矿质量。研究发现,在CsPbIBr2前驱体中加入6AA可以有效调节CsPbIBr2钙钛矿的结晶过程,因为6AA分子与CsPbIBr2前驱体组分表现出强烈的分子间相互作用,形成致密的CsPbIBr2钙钛矿膜,改善了CsPbIBr2钙钛矿的形貌,减少了缺陷。同时,6AA分子在钙钛矿结晶过程中被向下推,在埋藏界面处聚集形成6AA夹层,改善了界面接触,增强了埋藏界面处的电荷输运。钙钛矿质量的提高和埋藏界面改性有效地降低了非辐射复合和界面电荷损失。结果表明,制备的碳基CsPbIBr2太阳能电池效率为10.97%,长期稳定性显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Synchronous Perovskite Crystallization Regulation and Buried Interface Modification Improve the Stability and Efficiency of a Planar Inorganic Perovskite Solar Cell

Synchronous Perovskite Crystallization Regulation and Buried Interface Modification Improve the Stability and Efficiency of a Planar Inorganic Perovskite Solar Cell

The numerous defects in inorganic perovskites and inferior buried interfaces result in serious nonradiative recombination and energy loss, exacerbating the deterioration of the performance of inorganic perovskite solar cells. Here, we develop a facile strategy to simultaneously improve CsPbIBr2 perovskite quality by regulating perovskite crystallization and modify the buried interface by forming a 6-aminonicotinic acid (6AA) molecular interlayer through adding 6AA into a CsPbIBr2 precursor solution. It is found that adding 6AA into the CsPbIBr2 precursor effectively regulates the crystallization process of CsPbIBr2 perovskite because 6AA molecules exhibit a strong intermolecular interaction with CsPbIBr2 precursor components, resulting in forming a compact CsPbIBr2 perovskite film with improved morphology and decreased defects. Meanwhile, 6AA molecules are pushed downward during the perovskite crystallization process and accumulate at the buried interface to form the 6AA interlayer, which improves the interface contact and enhances the charge transport at the buried interface. The perovskite quality improvement and the buried interface modification effectively decrease the nonradiative recombination and interface charge loss. Consequently, the fabricated planar carbon-based CsPbIBr2 solar cell demonstrates an efficiency of 10.97% with a remarkably promoted long-term stability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信