磷酸盐镧系碳酸盐笼:显着聚集镧系氧化物芯与可移动阳离子模板

IF 3.2 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Chaolun Wei, Xiaojuan Li, Yi Liu, Hai-Ye Li*, Houting Liu* and Haiquan Tian*, 
{"title":"磷酸盐镧系碳酸盐笼:显着聚集镧系氧化物芯与可移动阳离子模板","authors":"Chaolun Wei,&nbsp;Xiaojuan Li,&nbsp;Yi Liu,&nbsp;Hai-Ye Li*,&nbsp;Houting Liu* and Haiquan Tian*,&nbsp;","doi":"10.1021/acs.cgd.5c0008210.1021/acs.cgd.5c00082","DOIUrl":null,"url":null,"abstract":"<p >Phosphonate lanthanide carbonate cages represent a fascinating class of clusters capable of supplying carbonate ions to the center of the cages; furthermore, the phosphonate ligands enclose the exterior. By removing sodium templating cations and regulating the release of carbonate templating anions, two significantly aggregated lanthanide shell–core–shell topologies have now been synthesized through the reaction of lanthanide naphthalene-functionalized phosphonates and two differently terminated C<sub>2</sub>-symmetric double hydrazones. The resulting two new phosphonate dysprosium carbonate cages [Dy<sub>12</sub>Na<sub>26</sub>(μ<sub>3</sub>-O<sub>3</sub>PC<sub>11</sub>H<sub>9</sub>)(μ<sub>4</sub>-O<sub>3</sub>PC<sub>11</sub>H<sub>9</sub>)(μ<sub>6</sub>-O<sub>3</sub>PC<sub>11</sub>H<sub>9</sub>)<sub>9</sub>(μ<sub>8</sub>-CO<sub>3</sub>)<sub>7</sub>(μ<sub>9</sub>-CO<sub>3</sub>)<sub>3</sub>(L<sup>1</sup>)<sub>5</sub>(μ<sub>3</sub>-O)<sub>6</sub>(μ<sub>2</sub>-O)<sub>10</sub>(DMF)<sub>6</sub>(H<sub>2</sub>O)<sub>9</sub>]·5DMF·4MeCN·4H<sub>2</sub>O (<b>1</b>) and [Dy<sub>22</sub>(μ<sub>3</sub>-O<sub>3</sub>PC<sub>10</sub>H<sub>7</sub>)<sub>4</sub>(μ<sub>5</sub>-O<sub>3</sub>PC<sub>10</sub>H<sub>7</sub>)<sub>4</sub>(μ<sub>6</sub>-O<sub>3</sub>PC<sub>10</sub>H<sub>7</sub>)<sub>6</sub>(μ<sub>5</sub>-CO<sub>3</sub>)<sub>2</sub>(μ<sub>6</sub>-CO<sub>3</sub>)<sub>4</sub>(L<sup>2</sup>)<sub>4</sub>(μ<sub>2</sub>-COO)<sub>4</sub>(μ<sub>3</sub>-O)<sub>4</sub>(μ<sub>2</sub>-O)<sub>2</sub>(H<sub>2</sub>O)<sub>11</sub>]·95MeOH·78H<sub>2</sub>O (<b>2</b>) were obtained. Two types of hydrazones function as tridecadentate and enneadentate intercepted coligands, coordinating the periphery of phosphonate dysprosium carbonate cages. The mixed hexacosaple sodium and decaple carbonate ions act as templating cations and anions for constructing heterobimetallic <b>1</b> by filling the void, showcasing the ability to effectively control dysprosium cage aggregation in homometallic <b>2</b> through the removal of the cation and anion templates. Additionally, it was noted that the aggregation of the dysprosium shell–core–shell cages significantly influences the magnetic relaxation behavior, shifting from a field-induced two-step process in <b>1</b> to a zero-field one-step process in <b>2</b>.</p>","PeriodicalId":34,"journal":{"name":"Crystal Growth & Design","volume":"25 6","pages":"1912–1922 1912–1922"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phosphonate Lanthanide Carbonate Cages: Remarkably Aggregated Lanthanide-Oxo Cores with Removable Cation Templates\",\"authors\":\"Chaolun Wei,&nbsp;Xiaojuan Li,&nbsp;Yi Liu,&nbsp;Hai-Ye Li*,&nbsp;Houting Liu* and Haiquan Tian*,&nbsp;\",\"doi\":\"10.1021/acs.cgd.5c0008210.1021/acs.cgd.5c00082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Phosphonate lanthanide carbonate cages represent a fascinating class of clusters capable of supplying carbonate ions to the center of the cages; furthermore, the phosphonate ligands enclose the exterior. By removing sodium templating cations and regulating the release of carbonate templating anions, two significantly aggregated lanthanide shell–core–shell topologies have now been synthesized through the reaction of lanthanide naphthalene-functionalized phosphonates and two differently terminated C<sub>2</sub>-symmetric double hydrazones. The resulting two new phosphonate dysprosium carbonate cages [Dy<sub>12</sub>Na<sub>26</sub>(μ<sub>3</sub>-O<sub>3</sub>PC<sub>11</sub>H<sub>9</sub>)(μ<sub>4</sub>-O<sub>3</sub>PC<sub>11</sub>H<sub>9</sub>)(μ<sub>6</sub>-O<sub>3</sub>PC<sub>11</sub>H<sub>9</sub>)<sub>9</sub>(μ<sub>8</sub>-CO<sub>3</sub>)<sub>7</sub>(μ<sub>9</sub>-CO<sub>3</sub>)<sub>3</sub>(L<sup>1</sup>)<sub>5</sub>(μ<sub>3</sub>-O)<sub>6</sub>(μ<sub>2</sub>-O)<sub>10</sub>(DMF)<sub>6</sub>(H<sub>2</sub>O)<sub>9</sub>]·5DMF·4MeCN·4H<sub>2</sub>O (<b>1</b>) and [Dy<sub>22</sub>(μ<sub>3</sub>-O<sub>3</sub>PC<sub>10</sub>H<sub>7</sub>)<sub>4</sub>(μ<sub>5</sub>-O<sub>3</sub>PC<sub>10</sub>H<sub>7</sub>)<sub>4</sub>(μ<sub>6</sub>-O<sub>3</sub>PC<sub>10</sub>H<sub>7</sub>)<sub>6</sub>(μ<sub>5</sub>-CO<sub>3</sub>)<sub>2</sub>(μ<sub>6</sub>-CO<sub>3</sub>)<sub>4</sub>(L<sup>2</sup>)<sub>4</sub>(μ<sub>2</sub>-COO)<sub>4</sub>(μ<sub>3</sub>-O)<sub>4</sub>(μ<sub>2</sub>-O)<sub>2</sub>(H<sub>2</sub>O)<sub>11</sub>]·95MeOH·78H<sub>2</sub>O (<b>2</b>) were obtained. Two types of hydrazones function as tridecadentate and enneadentate intercepted coligands, coordinating the periphery of phosphonate dysprosium carbonate cages. The mixed hexacosaple sodium and decaple carbonate ions act as templating cations and anions for constructing heterobimetallic <b>1</b> by filling the void, showcasing the ability to effectively control dysprosium cage aggregation in homometallic <b>2</b> through the removal of the cation and anion templates. Additionally, it was noted that the aggregation of the dysprosium shell–core–shell cages significantly influences the magnetic relaxation behavior, shifting from a field-induced two-step process in <b>1</b> to a zero-field one-step process in <b>2</b>.</p>\",\"PeriodicalId\":34,\"journal\":{\"name\":\"Crystal Growth & Design\",\"volume\":\"25 6\",\"pages\":\"1912–1922 1912–1922\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crystal Growth & Design\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.cgd.5c00082\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Growth & Design","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.cgd.5c00082","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

磷酸盐镧系碳酸盐笼代表了一类迷人的簇,能够向笼的中心提供碳酸盐离子;此外,磷酸盐配体包裹了外部。通过去除钠模板阳离子和调节碳酸盐模板阴离子的释放,通过镧系萘功能化膦酸盐和两个不同端部的c2对称双腙的反应,合成了两个显著聚集的镧系壳核壳结构。得到了两种新型磷酸盐型碳酸镝笼[Dy12Na26(μ3-O3PC11H9)(μ4-O3PC11H9)(μ6-O3PC11H9)9(μ8-CO3)7(μ9-CO3)3(L1)5(μ3-O)6(μ2-O)10(DMF)6(H2O)9]·5DMF·4MeCN·4H2O(1)]和[Dy22(μ3-O3PC10H7)4(μ6-O3PC10H7) 4(μ6-O3PC10H7)6(μ5-CO3)2(μ6-CO3)4(L2)4(μ2-COO)4(μ3-O)4(μ2-O)2(μ2-O)2(H2O)11]·95MeOH·78H2O(2)]。两种类型的腙作为三齿形和十齿形拦截共配体,协调磷酸盐型碳酸镝笼的外围。混合的六聚钠和十聚碳酸钠离子作为模板阳离子和阴离子,通过填充空隙来构建杂双金属1,显示了通过去除阳离子和阴离子模板来有效控制同金属2中镝笼聚集的能力。此外,还注意到镝壳-核-壳笼的聚集显著影响磁弛豫行为,从1中的场诱导两步过程转变为2中的零场一步过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Phosphonate Lanthanide Carbonate Cages: Remarkably Aggregated Lanthanide-Oxo Cores with Removable Cation Templates

Phosphonate Lanthanide Carbonate Cages: Remarkably Aggregated Lanthanide-Oxo Cores with Removable Cation Templates

Phosphonate lanthanide carbonate cages represent a fascinating class of clusters capable of supplying carbonate ions to the center of the cages; furthermore, the phosphonate ligands enclose the exterior. By removing sodium templating cations and regulating the release of carbonate templating anions, two significantly aggregated lanthanide shell–core–shell topologies have now been synthesized through the reaction of lanthanide naphthalene-functionalized phosphonates and two differently terminated C2-symmetric double hydrazones. The resulting two new phosphonate dysprosium carbonate cages [Dy12Na263-O3PC11H9)(μ4-O3PC11H9)(μ6-O3PC11H9)98-CO3)79-CO3)3(L1)53-O)62-O)10(DMF)6(H2O)9]·5DMF·4MeCN·4H2O (1) and [Dy223-O3PC10H7)45-O3PC10H7)46-O3PC10H7)65-CO3)26-CO3)4(L2)42-COO)43-O)42-O)2(H2O)11]·95MeOH·78H2O (2) were obtained. Two types of hydrazones function as tridecadentate and enneadentate intercepted coligands, coordinating the periphery of phosphonate dysprosium carbonate cages. The mixed hexacosaple sodium and decaple carbonate ions act as templating cations and anions for constructing heterobimetallic 1 by filling the void, showcasing the ability to effectively control dysprosium cage aggregation in homometallic 2 through the removal of the cation and anion templates. Additionally, it was noted that the aggregation of the dysprosium shell–core–shell cages significantly influences the magnetic relaxation behavior, shifting from a field-induced two-step process in 1 to a zero-field one-step process in 2.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Crystal Growth & Design
Crystal Growth & Design 化学-材料科学:综合
CiteScore
6.30
自引率
10.50%
发文量
650
审稿时长
1.9 months
期刊介绍: The aim of Crystal Growth & Design is to stimulate crossfertilization of knowledge among scientists and engineers working in the fields of crystal growth, crystal engineering, and the industrial application of crystalline materials. Crystal Growth & Design publishes theoretical and experimental studies of the physical, chemical, and biological phenomena and processes related to the design, growth, and application of crystalline materials. Synergistic approaches originating from different disciplines and technologies and integrating the fields of crystal growth, crystal engineering, intermolecular interactions, and industrial application are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信