正交氧化锆薄膜中的铁电性

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xianglong Li, Zengxu Xu, Songbai Hu, Mingqiang Gu, Yuanmin Zhu, Qi Liu, Yihao Yang, Mao Ye, Jingxuan Li and Lang Chen*, 
{"title":"正交氧化锆薄膜中的铁电性","authors":"Xianglong Li,&nbsp;Zengxu Xu,&nbsp;Songbai Hu,&nbsp;Mingqiang Gu,&nbsp;Yuanmin Zhu,&nbsp;Qi Liu,&nbsp;Yihao Yang,&nbsp;Mao Ye,&nbsp;Jingxuan Li and Lang Chen*,&nbsp;","doi":"10.1021/acs.nanolett.4c0561210.1021/acs.nanolett.4c05612","DOIUrl":null,"url":null,"abstract":"<p >Ferroelectric fluorite oxides such as hafnium (HfO<sub>2</sub>)-based materials are one of the most promising candidates for future large-scale integrated circuits (ICs), while zirconia (ZrO<sub>2</sub>)-based fluorite materials, which have the same structure as HfO<sub>2</sub> and <b>more abundant resources and lower cost of raw materials</b>, are usually thought to be anti- or ferroelectric-like. Here, we report a remanent polarization (<i>P</i><sub><i>r</i></sub>) of ∼15 μC/cm<sup>2</sup> in orthorhombic ZrO<sub>2</sub> thin films at 77 K. This ferroelectricity arises from an electric field-induced antiferroelectric to ferroelectric phase transition, which is particularly noticeable at 77 K. Our work reveals the ferroelectricity in ZrO<sub>2</sub> thin films and offers a new pathway to understand the origin of ferroelectricity in fluorite oxides.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"25 11","pages":"4220–4226 4220–4226"},"PeriodicalIF":9.1000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ferroelectricity in Orthorhombic Zirconia Thin Films\",\"authors\":\"Xianglong Li,&nbsp;Zengxu Xu,&nbsp;Songbai Hu,&nbsp;Mingqiang Gu,&nbsp;Yuanmin Zhu,&nbsp;Qi Liu,&nbsp;Yihao Yang,&nbsp;Mao Ye,&nbsp;Jingxuan Li and Lang Chen*,&nbsp;\",\"doi\":\"10.1021/acs.nanolett.4c0561210.1021/acs.nanolett.4c05612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Ferroelectric fluorite oxides such as hafnium (HfO<sub>2</sub>)-based materials are one of the most promising candidates for future large-scale integrated circuits (ICs), while zirconia (ZrO<sub>2</sub>)-based fluorite materials, which have the same structure as HfO<sub>2</sub> and <b>more abundant resources and lower cost of raw materials</b>, are usually thought to be anti- or ferroelectric-like. Here, we report a remanent polarization (<i>P</i><sub><i>r</i></sub>) of ∼15 μC/cm<sup>2</sup> in orthorhombic ZrO<sub>2</sub> thin films at 77 K. This ferroelectricity arises from an electric field-induced antiferroelectric to ferroelectric phase transition, which is particularly noticeable at 77 K. Our work reveals the ferroelectricity in ZrO<sub>2</sub> thin films and offers a new pathway to understand the origin of ferroelectricity in fluorite oxides.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"25 11\",\"pages\":\"4220–4226 4220–4226\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.nanolett.4c05612\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.4c05612","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

铁电萤石氧化物如铪(HfO2)基材料是未来大规模集成电路(ic)最有前途的候选材料之一,而氧化锆(ZrO2)基萤石材料具有与HfO2相同的结构,资源更丰富,原材料成本更低,通常被认为是抗或类铁电材料。在这里,我们报道了正交ZrO2薄膜在77 K下的剩余极化(Pr)为~ 15 μC/cm2。这种铁电性是由电场诱导的反铁电到铁电的相变引起的,在77 K时尤其明显。我们的工作揭示了ZrO2薄膜中的铁电性,为了解萤石氧化物中铁电性的起源提供了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ferroelectricity in Orthorhombic Zirconia Thin Films

Ferroelectricity in Orthorhombic Zirconia Thin Films

Ferroelectric fluorite oxides such as hafnium (HfO2)-based materials are one of the most promising candidates for future large-scale integrated circuits (ICs), while zirconia (ZrO2)-based fluorite materials, which have the same structure as HfO2 and more abundant resources and lower cost of raw materials, are usually thought to be anti- or ferroelectric-like. Here, we report a remanent polarization (Pr) of ∼15 μC/cm2 in orthorhombic ZrO2 thin films at 77 K. This ferroelectricity arises from an electric field-induced antiferroelectric to ferroelectric phase transition, which is particularly noticeable at 77 K. Our work reveals the ferroelectricity in ZrO2 thin films and offers a new pathway to understand the origin of ferroelectricity in fluorite oxides.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信