Fan Zhang, Hui Zhang, Weiwei Han, Shiliu Yang, Yijun Wei, Yi He, Lecheng Lei and Xingwang Zhang*,
{"title":"铒掺杂和NiCoP杂化对阴离子交换膜水分裂的多位点电子态协同调制","authors":"Fan Zhang, Hui Zhang, Weiwei Han, Shiliu Yang, Yijun Wei, Yi He, Lecheng Lei and Xingwang Zhang*, ","doi":"10.1021/acs.nanolett.5c0000110.1021/acs.nanolett.5c00001","DOIUrl":null,"url":null,"abstract":"<p >Water dissociation in anion exchange membrane water electrolysis (AEMWE) faces significant energy barriers, posing a challenge for reducing cell voltage. Herein, we engineered CoP nanosheets by doping Er and hybridizing with NiCoP to optimize local electronic states and accelerate H<sub>2</sub>O dissociation during the hydrogen evolution reaction. The resulting Er<sub>0.1</sub>-CoP/NiCoP catalyst achieves a low overpotential of 154 mV at −500 mA cm<sup>–2</sup> in 1.0 M KOH. An AEM electrolyzer comprising an Er<sub>0.1</sub>-CoP/NiCoP@NF cathode demonstrates a low cell voltage of 1.672 V and stability exceeding 1000 h at 500 mA cm<sup>–2</sup> (50 °C). Characterization, density functional theory (DFT) calculations, and ab initio molecular dynamics (AIMD) simulations reveal that Er doping and NiCoP hybridization synergistically modulate charge distribution across multisites, shifting the p-band centers away from the Fermi level. These adjustments optimize the free energy of H* adsorption (Δ<i>G</i><sub>H*</sub>) and improve OH*/H<sub>2</sub>O* adsorption, thereby facilitating H<sub>2</sub>O dissociation and H<sub>2</sub> evolution.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"25 11","pages":"4441–4449 4441–4449"},"PeriodicalIF":9.1000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic Modulation of Multisite Electronic States via Erbium Doping and NiCoP Hybridization for Enhanced Anion Exchange Membrane Water Splitting\",\"authors\":\"Fan Zhang, Hui Zhang, Weiwei Han, Shiliu Yang, Yijun Wei, Yi He, Lecheng Lei and Xingwang Zhang*, \",\"doi\":\"10.1021/acs.nanolett.5c0000110.1021/acs.nanolett.5c00001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Water dissociation in anion exchange membrane water electrolysis (AEMWE) faces significant energy barriers, posing a challenge for reducing cell voltage. Herein, we engineered CoP nanosheets by doping Er and hybridizing with NiCoP to optimize local electronic states and accelerate H<sub>2</sub>O dissociation during the hydrogen evolution reaction. The resulting Er<sub>0.1</sub>-CoP/NiCoP catalyst achieves a low overpotential of 154 mV at −500 mA cm<sup>–2</sup> in 1.0 M KOH. An AEM electrolyzer comprising an Er<sub>0.1</sub>-CoP/NiCoP@NF cathode demonstrates a low cell voltage of 1.672 V and stability exceeding 1000 h at 500 mA cm<sup>–2</sup> (50 °C). Characterization, density functional theory (DFT) calculations, and ab initio molecular dynamics (AIMD) simulations reveal that Er doping and NiCoP hybridization synergistically modulate charge distribution across multisites, shifting the p-band centers away from the Fermi level. These adjustments optimize the free energy of H* adsorption (Δ<i>G</i><sub>H*</sub>) and improve OH*/H<sub>2</sub>O* adsorption, thereby facilitating H<sub>2</sub>O dissociation and H<sub>2</sub> evolution.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"25 11\",\"pages\":\"4441–4449 4441–4449\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c00001\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c00001","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
阴离子交换膜电解(AEMWE)中的水解离存在明显的能量障碍,对降低电池电压提出了挑战。在此,我们通过掺杂Er并与NiCoP杂化来设计CoP纳米片,以优化局部电子状态并加速析氢反应中的H2O解离。得到的Er0.1-CoP/NiCoP催化剂在- 500 mA cm-2和1.0 M KOH条件下获得了154 mV的低过电位。由Er0.1-CoP/NiCoP@NF阴极组成的AEM电解槽具有1.672 V的低电池电压和500 mA cm-2(50°C)下超过1000小时的稳定性。表征、密度泛函理论(DFT)计算和从头算分子动力学(AIMD)模拟表明,铒掺杂和NiCoP杂化协同调节了多位点的电荷分布,使p带中心远离费米能级。这些调整优化了H*吸附的自由能(ΔGH*),提高了OH*/H2O*的吸附,从而促进了H2O的解离和H2的生成。
Synergistic Modulation of Multisite Electronic States via Erbium Doping and NiCoP Hybridization for Enhanced Anion Exchange Membrane Water Splitting
Water dissociation in anion exchange membrane water electrolysis (AEMWE) faces significant energy barriers, posing a challenge for reducing cell voltage. Herein, we engineered CoP nanosheets by doping Er and hybridizing with NiCoP to optimize local electronic states and accelerate H2O dissociation during the hydrogen evolution reaction. The resulting Er0.1-CoP/NiCoP catalyst achieves a low overpotential of 154 mV at −500 mA cm–2 in 1.0 M KOH. An AEM electrolyzer comprising an Er0.1-CoP/NiCoP@NF cathode demonstrates a low cell voltage of 1.672 V and stability exceeding 1000 h at 500 mA cm–2 (50 °C). Characterization, density functional theory (DFT) calculations, and ab initio molecular dynamics (AIMD) simulations reveal that Er doping and NiCoP hybridization synergistically modulate charge distribution across multisites, shifting the p-band centers away from the Fermi level. These adjustments optimize the free energy of H* adsorption (ΔGH*) and improve OH*/H2O* adsorption, thereby facilitating H2O dissociation and H2 evolution.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.