{"title":"一种覆盖可见光、中波红外和长波红外的光学安全三波段超表面","authors":"Qixiang Chen, Xuemei Huang, Zezhao Ju, Hongtao Lin, Huajie Tang, Chenyue Guo, Fan Fan, Xinyu Zhao, Yaoguang Ma, Yue Luo, Wei Li*, Wenqi Zhong* and Dongliang Zhao*, ","doi":"10.1021/acs.nanolett.5c0008310.1021/acs.nanolett.5c00083","DOIUrl":null,"url":null,"abstract":"<p >The independent manipulation of light across multiple wavelength bands provides new opportunities for optical security. Although dual-band optical encryption methods in the visible (VIS) and infrared bands have been developed, achieving synchronized and synergistic optical security across the VIS, midwave infrared (MWIR), and long-wave infrared (LWIR) bands remains a significant challenge. Here, we experimentally demonstrate a triband metasurface that covers the VIS, MWIR, and LWIR bands. While VIS imaging is achieved by structural color, MWIR, and LWIR imaging are achieved by selective emissivity structures, with MWIR/LWIR emissivities in the MWIR imaging region of 0.81/0.17, and in the LWIR imaging region of 0.21/0.83. Importantly, the MWIR and LWIR information is completely hidden in the VIS band. We also validate the ability of metasurface to encode complex information and information-misleading encryption. This work introduces new approaches for enhancing optical security and holds significant potential for applications such as anticounterfeiting and thermal camouflage.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"25 11","pages":"4459–4466 4459–4466"},"PeriodicalIF":9.1000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Triband Metasurface Covering Visible, Midwave Infrared, and Long-Wave Infrared for Optical Security\",\"authors\":\"Qixiang Chen, Xuemei Huang, Zezhao Ju, Hongtao Lin, Huajie Tang, Chenyue Guo, Fan Fan, Xinyu Zhao, Yaoguang Ma, Yue Luo, Wei Li*, Wenqi Zhong* and Dongliang Zhao*, \",\"doi\":\"10.1021/acs.nanolett.5c0008310.1021/acs.nanolett.5c00083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The independent manipulation of light across multiple wavelength bands provides new opportunities for optical security. Although dual-band optical encryption methods in the visible (VIS) and infrared bands have been developed, achieving synchronized and synergistic optical security across the VIS, midwave infrared (MWIR), and long-wave infrared (LWIR) bands remains a significant challenge. Here, we experimentally demonstrate a triband metasurface that covers the VIS, MWIR, and LWIR bands. While VIS imaging is achieved by structural color, MWIR, and LWIR imaging are achieved by selective emissivity structures, with MWIR/LWIR emissivities in the MWIR imaging region of 0.81/0.17, and in the LWIR imaging region of 0.21/0.83. Importantly, the MWIR and LWIR information is completely hidden in the VIS band. We also validate the ability of metasurface to encode complex information and information-misleading encryption. This work introduces new approaches for enhancing optical security and holds significant potential for applications such as anticounterfeiting and thermal camouflage.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"25 11\",\"pages\":\"4459–4466 4459–4466\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c00083\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c00083","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A Triband Metasurface Covering Visible, Midwave Infrared, and Long-Wave Infrared for Optical Security
The independent manipulation of light across multiple wavelength bands provides new opportunities for optical security. Although dual-band optical encryption methods in the visible (VIS) and infrared bands have been developed, achieving synchronized and synergistic optical security across the VIS, midwave infrared (MWIR), and long-wave infrared (LWIR) bands remains a significant challenge. Here, we experimentally demonstrate a triband metasurface that covers the VIS, MWIR, and LWIR bands. While VIS imaging is achieved by structural color, MWIR, and LWIR imaging are achieved by selective emissivity structures, with MWIR/LWIR emissivities in the MWIR imaging region of 0.81/0.17, and in the LWIR imaging region of 0.21/0.83. Importantly, the MWIR and LWIR information is completely hidden in the VIS band. We also validate the ability of metasurface to encode complex information and information-misleading encryption. This work introduces new approaches for enhancing optical security and holds significant potential for applications such as anticounterfeiting and thermal camouflage.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.