Ciro Micheletti Diniz, Celso J Villas-Boas and Alan C Santos
{"title":"具有超导集成电路的可伸缩量子擦除器","authors":"Ciro Micheletti Diniz, Celso J Villas-Boas and Alan C Santos","doi":"10.1088/2058-9565/adbded","DOIUrl":null,"url":null,"abstract":"A fast and scalable scheme for multi-qubit resetting in superconducting quantum processors is proposed by exploiting the feasibility of frequency-tunable transmon qubits and transmon-like couplers to engineer a full programmable superconducting erasing head. We demonstrate the emergence of collective effects that lead to a decoherence-free subspace during the erasing process. The presence of such a subspace negatively impacts the device’s performance and has been overlooked in other multi-qubit chips. To circumvent this issue and pave the way to the device’s scalability, we employ tunable frequency couplers to identify a specific set of parameters that enables us to erase even those states within this subspace, ensuring the simultaneous multi-qubit resetting, verified here for the two-qubit case. In contrast, we show that collectivity effects can also emerge as an ingredient to speed up the erasing process. To end, we offer a proposal to build up integrated superconducting processors that can be efficiently connected to erasure heads in a scalable way.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"183 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scalable quantum eraser with superconducting integrated circuits\",\"authors\":\"Ciro Micheletti Diniz, Celso J Villas-Boas and Alan C Santos\",\"doi\":\"10.1088/2058-9565/adbded\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A fast and scalable scheme for multi-qubit resetting in superconducting quantum processors is proposed by exploiting the feasibility of frequency-tunable transmon qubits and transmon-like couplers to engineer a full programmable superconducting erasing head. We demonstrate the emergence of collective effects that lead to a decoherence-free subspace during the erasing process. The presence of such a subspace negatively impacts the device’s performance and has been overlooked in other multi-qubit chips. To circumvent this issue and pave the way to the device’s scalability, we employ tunable frequency couplers to identify a specific set of parameters that enables us to erase even those states within this subspace, ensuring the simultaneous multi-qubit resetting, verified here for the two-qubit case. In contrast, we show that collectivity effects can also emerge as an ingredient to speed up the erasing process. To end, we offer a proposal to build up integrated superconducting processors that can be efficiently connected to erasure heads in a scalable way.\",\"PeriodicalId\":20821,\"journal\":{\"name\":\"Quantum Science and Technology\",\"volume\":\"183 1\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Science and Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/2058-9565/adbded\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/adbded","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Scalable quantum eraser with superconducting integrated circuits
A fast and scalable scheme for multi-qubit resetting in superconducting quantum processors is proposed by exploiting the feasibility of frequency-tunable transmon qubits and transmon-like couplers to engineer a full programmable superconducting erasing head. We demonstrate the emergence of collective effects that lead to a decoherence-free subspace during the erasing process. The presence of such a subspace negatively impacts the device’s performance and has been overlooked in other multi-qubit chips. To circumvent this issue and pave the way to the device’s scalability, we employ tunable frequency couplers to identify a specific set of parameters that enables us to erase even those states within this subspace, ensuring the simultaneous multi-qubit resetting, verified here for the two-qubit case. In contrast, we show that collectivity effects can also emerge as an ingredient to speed up the erasing process. To end, we offer a proposal to build up integrated superconducting processors that can be efficiently connected to erasure heads in a scalable way.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.