双金属金-银纳米星的控制合成:原子洞察和预测形成模型

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-03-18 DOI:10.1002/smll.202410152
Daniela Dobrynin, Ivan Zlotver, Iryna Polishchuk, Yaron Kauffmann, Sharon Suharenko, Ron Koifman, Lucas Kuhrts, Alexander Katsman, Alejandro Sosnik, Boaz Pokroy
{"title":"双金属金-银纳米星的控制合成:原子洞察和预测形成模型","authors":"Daniela Dobrynin,&nbsp;Ivan Zlotver,&nbsp;Iryna Polishchuk,&nbsp;Yaron Kauffmann,&nbsp;Sharon Suharenko,&nbsp;Ron Koifman,&nbsp;Lucas Kuhrts,&nbsp;Alexander Katsman,&nbsp;Alejandro Sosnik,&nbsp;Boaz Pokroy","doi":"10.1002/smll.202410152","DOIUrl":null,"url":null,"abstract":"<p>The nucleation and growth of bimetallic gold-silver nanostars (GNSs) are investigated to elucidate their atomic-scale formation mechanism. Motivated by the increasing demand for nanomaterials with enhanced optical and catalytic properties, particularly for applications in biosensing, bioimaging, and photothermal therapy, this work focuses on understanding the factors governing GNSs formation. GNSs are synthesized by reducing HAuCl₄ with ascorbic acid in the presence of AgNO₃, exploring the influence of temperature, delay time in AgNO₃ introduction, and AgNO<sub>3</sub> concentration. High-resolution electron microscopy, energy-dispersive X-ray spectroscopy, high-resolution X-ray photoelectron spectroscopy, and synchrotron-based powder X-ray diffraction are used to characterize their morphology, size, composition, and stability. These findings reveal that AgNO₃ promotes anisotropic growth through the formation of metallic Ag and AgCl on GNSs surfaces, leading to thorn-like structures. A detailed analysis of kinetics, particle concentration, and nucleation barriers enables the development of a theoretical model to predict optimal synthesis conditions. This work provides new insights into controlling GNSs morphology and properties, which are critical for optimizing their performance in catalysis, sensing, and biomedical applications. The novelty lies in the discovery of the role of AgCl in directing GNSs growth and the formulation of a predictive model for synthesis optimization.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 32","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/smll.202410152","citationCount":"0","resultStr":"{\"title\":\"Controlled Synthesis of Bimetallic Gold-Silver Nanostars: Atomic Insights and Predictive Formation Model\",\"authors\":\"Daniela Dobrynin,&nbsp;Ivan Zlotver,&nbsp;Iryna Polishchuk,&nbsp;Yaron Kauffmann,&nbsp;Sharon Suharenko,&nbsp;Ron Koifman,&nbsp;Lucas Kuhrts,&nbsp;Alexander Katsman,&nbsp;Alejandro Sosnik,&nbsp;Boaz Pokroy\",\"doi\":\"10.1002/smll.202410152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The nucleation and growth of bimetallic gold-silver nanostars (GNSs) are investigated to elucidate their atomic-scale formation mechanism. Motivated by the increasing demand for nanomaterials with enhanced optical and catalytic properties, particularly for applications in biosensing, bioimaging, and photothermal therapy, this work focuses on understanding the factors governing GNSs formation. GNSs are synthesized by reducing HAuCl₄ with ascorbic acid in the presence of AgNO₃, exploring the influence of temperature, delay time in AgNO₃ introduction, and AgNO<sub>3</sub> concentration. High-resolution electron microscopy, energy-dispersive X-ray spectroscopy, high-resolution X-ray photoelectron spectroscopy, and synchrotron-based powder X-ray diffraction are used to characterize their morphology, size, composition, and stability. These findings reveal that AgNO₃ promotes anisotropic growth through the formation of metallic Ag and AgCl on GNSs surfaces, leading to thorn-like structures. A detailed analysis of kinetics, particle concentration, and nucleation barriers enables the development of a theoretical model to predict optimal synthesis conditions. This work provides new insights into controlling GNSs morphology and properties, which are critical for optimizing their performance in catalysis, sensing, and biomedical applications. The novelty lies in the discovery of the role of AgCl in directing GNSs growth and the formulation of a predictive model for synthesis optimization.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"21 32\",\"pages\":\"\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/smll.202410152\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smll.202410152\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202410152","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

研究了双金属金-银纳米星(GNSs)的成核和生长,以阐明其原子尺度的形成机制。由于对具有增强光学和催化性能的纳米材料的需求不断增加,特别是在生物传感、生物成像和光热治疗方面的应用,本研究的重点是了解控制全球导航卫星系统形成的因素。在AgNO₃存在下,用抗坏血酸还原HAuCl₄合成GNSs,探讨了AgNO₃引入的温度、延迟时间和AgNO3浓度对GNSs的影响。采用高分辨率电子显微镜、能量色散x射线能谱、高分辨率x射线光电子能谱和基于同步加速器的粉末x射线衍射来表征它们的形态、尺寸、组成和稳定性。这些发现表明AgNO₃通过在GNSs表面形成金属Ag和AgCl来促进各向异性生长,导致刺状结构。动力学,颗粒浓度和成核障碍的详细分析,使理论模型的发展,以预测最佳的合成条件。这项工作为控制GNSs的形态和性质提供了新的见解,这对于优化其在催化、传感和生物医学应用中的性能至关重要。新颖之处在于发现了AgCl在指导GNSs生长中的作用,并建立了用于合成优化的预测模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Controlled Synthesis of Bimetallic Gold-Silver Nanostars: Atomic Insights and Predictive Formation Model

Controlled Synthesis of Bimetallic Gold-Silver Nanostars: Atomic Insights and Predictive Formation Model

Controlled Synthesis of Bimetallic Gold-Silver Nanostars: Atomic Insights and Predictive Formation Model

The nucleation and growth of bimetallic gold-silver nanostars (GNSs) are investigated to elucidate their atomic-scale formation mechanism. Motivated by the increasing demand for nanomaterials with enhanced optical and catalytic properties, particularly for applications in biosensing, bioimaging, and photothermal therapy, this work focuses on understanding the factors governing GNSs formation. GNSs are synthesized by reducing HAuCl₄ with ascorbic acid in the presence of AgNO₃, exploring the influence of temperature, delay time in AgNO₃ introduction, and AgNO3 concentration. High-resolution electron microscopy, energy-dispersive X-ray spectroscopy, high-resolution X-ray photoelectron spectroscopy, and synchrotron-based powder X-ray diffraction are used to characterize their morphology, size, composition, and stability. These findings reveal that AgNO₃ promotes anisotropic growth through the formation of metallic Ag and AgCl on GNSs surfaces, leading to thorn-like structures. A detailed analysis of kinetics, particle concentration, and nucleation barriers enables the development of a theoretical model to predict optimal synthesis conditions. This work provides new insights into controlling GNSs morphology and properties, which are critical for optimizing their performance in catalysis, sensing, and biomedical applications. The novelty lies in the discovery of the role of AgCl in directing GNSs growth and the formulation of a predictive model for synthesis optimization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信