{"title":"用于连续动态监测的低基线漂移高灵敏度应变传感器协同结构构建","authors":"Tingkang Yuan, Ruilin Yin, Chengwei Li, Jingwen Xing, Dongyue Jiang, Zeng Fan, Lujun Pan","doi":"10.1021/acs.nanolett.5c00327","DOIUrl":null,"url":null,"abstract":"Strain sensors based on conductive elastomers face challenges like baseline drift and noise due to inherent viscoelasticity and weak electrode interfaces under dynamic strains. Herein, a synergistic structure with biphasic hierarchical networks and stable electrode interfaces is proposed to address these issues. The sensor employs a multilayer structure with polydimethylsiloxane (PDMS) substrate, carbon nanotube-doped PDMS (CNT-PDMS), and Ag film. Electrodes are fixed using a rigid island reinforced mortise and tenon joint formed with PDMS and CNT-PDMS. The Ag film dominates resistance during release, significantly reducing baseline drift. Strain-insensitive electrode interfaces further reduce baseline drift and noise. This optimized design ensures 99.999% resistance recovery without delay, even at high-speed (800 mm/min) and large (80%) strains. The sensor exhibits a high gauge factor of 55442, low detection limit (0.02%), and excellent stability (5000 cycles). With the designed algorithms, the single-channel sensor achieves 98.2% decoding accuracy for various gestures, demonstrating great potential for wearable electronics.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"7 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic Structural Construction of Strain Sensors with Low Baseline Drift and High Sensitivity for Continuous Dynamic Monitoring\",\"authors\":\"Tingkang Yuan, Ruilin Yin, Chengwei Li, Jingwen Xing, Dongyue Jiang, Zeng Fan, Lujun Pan\",\"doi\":\"10.1021/acs.nanolett.5c00327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Strain sensors based on conductive elastomers face challenges like baseline drift and noise due to inherent viscoelasticity and weak electrode interfaces under dynamic strains. Herein, a synergistic structure with biphasic hierarchical networks and stable electrode interfaces is proposed to address these issues. The sensor employs a multilayer structure with polydimethylsiloxane (PDMS) substrate, carbon nanotube-doped PDMS (CNT-PDMS), and Ag film. Electrodes are fixed using a rigid island reinforced mortise and tenon joint formed with PDMS and CNT-PDMS. The Ag film dominates resistance during release, significantly reducing baseline drift. Strain-insensitive electrode interfaces further reduce baseline drift and noise. This optimized design ensures 99.999% resistance recovery without delay, even at high-speed (800 mm/min) and large (80%) strains. The sensor exhibits a high gauge factor of 55442, low detection limit (0.02%), and excellent stability (5000 cycles). With the designed algorithms, the single-channel sensor achieves 98.2% decoding accuracy for various gestures, demonstrating great potential for wearable electronics.\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.5c00327\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.5c00327","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Synergistic Structural Construction of Strain Sensors with Low Baseline Drift and High Sensitivity for Continuous Dynamic Monitoring
Strain sensors based on conductive elastomers face challenges like baseline drift and noise due to inherent viscoelasticity and weak electrode interfaces under dynamic strains. Herein, a synergistic structure with biphasic hierarchical networks and stable electrode interfaces is proposed to address these issues. The sensor employs a multilayer structure with polydimethylsiloxane (PDMS) substrate, carbon nanotube-doped PDMS (CNT-PDMS), and Ag film. Electrodes are fixed using a rigid island reinforced mortise and tenon joint formed with PDMS and CNT-PDMS. The Ag film dominates resistance during release, significantly reducing baseline drift. Strain-insensitive electrode interfaces further reduce baseline drift and noise. This optimized design ensures 99.999% resistance recovery without delay, even at high-speed (800 mm/min) and large (80%) strains. The sensor exhibits a high gauge factor of 55442, low detection limit (0.02%), and excellent stability (5000 cycles). With the designed algorithms, the single-channel sensor achieves 98.2% decoding accuracy for various gestures, demonstrating great potential for wearable electronics.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.