{"title":"小染色体维护 4 通过调节肾小管上皮细胞的存活和再生,在防止急性肾损伤中发挥关键作用","authors":"Jing Huang, Feng Liu, Zhi-Feng Xu, Hui-Ling Xiang, Qian Yuan, Chun Zhang","doi":"10.1016/j.jare.2025.03.032","DOIUrl":null,"url":null,"abstract":"<h3>Introduction</h3>Minichromosome maintenance 4 (MCM4), a constituent of the MCM family, playing a pivotal role in DNA replication. Although MCM4 expression has been widely linked to various malignant tumors, its role in kidney diseases is not well-studied. This study primarily investigates the role and underlying mechanism of MCM4 in acute kidney injury (AKI).<h3>Objectives</h3>Characterizing a novel target of MCM4 in patients with AKI.<h3>Methods</h3>We used CRISPR/Cas9 gene editing to delete MCM4 gene in tubular cells from C57BL/6J mice. Adeno-associated virus 9 harboring MCM4 was administered via intraparenchymal injection into the kidney to enhance MCM4 expression <em>in vivo</em>. These mice were used to established cisplatin- and ischemic reperfusion injury (IRI)-induced AKI mouse models, for detecting the functional role of MCM4 in the pathological process of AKI.<h3>Results</h3>MCM4 level was increased in the tubules of cisplatin- and IRI-induced AKI mouse models. Compare to wide-type mice, MCM4 knockout mice demonstrated greater degree of histological damage and a higher ratio of apoptotic tubular cells, as well as kidney dysfunction upon cisplatin- and IRI-induced AKI models. Conversely, MCM4 overexpression ameliorated the severity of kidney injury and promoted regenerative capacity of tubular cells during AKI development. Mechanically, loss of MCM4 induced the expression of p53-binding protein 1, activating the p53/p21 pathway and exacerbating AKI progression. Additional, MAD2B, as an upstream molecule of MCM4, regulates the transcription level of MCM4 by affecting the level of E2F1.<h3>Conclusions</h3>These findings demonstrate that MCM4 upregulation during AKI development is an adaptive response that preserves tubular cell regenerative capacity and limits the severity of renal injury, thus highlighting the potential value of MCM4 as a biomarker or therapeutic target in patients with AKI.","PeriodicalId":14952,"journal":{"name":"Journal of Advanced Research","volume":"36 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minichromosome maintenance 4 plays a key role in protecting against acute kidney injury by regulating tubular epithelial cells survival and regeneration\",\"authors\":\"Jing Huang, Feng Liu, Zhi-Feng Xu, Hui-Ling Xiang, Qian Yuan, Chun Zhang\",\"doi\":\"10.1016/j.jare.2025.03.032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Introduction</h3>Minichromosome maintenance 4 (MCM4), a constituent of the MCM family, playing a pivotal role in DNA replication. Although MCM4 expression has been widely linked to various malignant tumors, its role in kidney diseases is not well-studied. This study primarily investigates the role and underlying mechanism of MCM4 in acute kidney injury (AKI).<h3>Objectives</h3>Characterizing a novel target of MCM4 in patients with AKI.<h3>Methods</h3>We used CRISPR/Cas9 gene editing to delete MCM4 gene in tubular cells from C57BL/6J mice. Adeno-associated virus 9 harboring MCM4 was administered via intraparenchymal injection into the kidney to enhance MCM4 expression <em>in vivo</em>. These mice were used to established cisplatin- and ischemic reperfusion injury (IRI)-induced AKI mouse models, for detecting the functional role of MCM4 in the pathological process of AKI.<h3>Results</h3>MCM4 level was increased in the tubules of cisplatin- and IRI-induced AKI mouse models. Compare to wide-type mice, MCM4 knockout mice demonstrated greater degree of histological damage and a higher ratio of apoptotic tubular cells, as well as kidney dysfunction upon cisplatin- and IRI-induced AKI models. Conversely, MCM4 overexpression ameliorated the severity of kidney injury and promoted regenerative capacity of tubular cells during AKI development. Mechanically, loss of MCM4 induced the expression of p53-binding protein 1, activating the p53/p21 pathway and exacerbating AKI progression. Additional, MAD2B, as an upstream molecule of MCM4, regulates the transcription level of MCM4 by affecting the level of E2F1.<h3>Conclusions</h3>These findings demonstrate that MCM4 upregulation during AKI development is an adaptive response that preserves tubular cell regenerative capacity and limits the severity of renal injury, thus highlighting the potential value of MCM4 as a biomarker or therapeutic target in patients with AKI.\",\"PeriodicalId\":14952,\"journal\":{\"name\":\"Journal of Advanced Research\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Research\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jare.2025.03.032\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.jare.2025.03.032","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Minichromosome maintenance 4 plays a key role in protecting against acute kidney injury by regulating tubular epithelial cells survival and regeneration
Introduction
Minichromosome maintenance 4 (MCM4), a constituent of the MCM family, playing a pivotal role in DNA replication. Although MCM4 expression has been widely linked to various malignant tumors, its role in kidney diseases is not well-studied. This study primarily investigates the role and underlying mechanism of MCM4 in acute kidney injury (AKI).
Objectives
Characterizing a novel target of MCM4 in patients with AKI.
Methods
We used CRISPR/Cas9 gene editing to delete MCM4 gene in tubular cells from C57BL/6J mice. Adeno-associated virus 9 harboring MCM4 was administered via intraparenchymal injection into the kidney to enhance MCM4 expression in vivo. These mice were used to established cisplatin- and ischemic reperfusion injury (IRI)-induced AKI mouse models, for detecting the functional role of MCM4 in the pathological process of AKI.
Results
MCM4 level was increased in the tubules of cisplatin- and IRI-induced AKI mouse models. Compare to wide-type mice, MCM4 knockout mice demonstrated greater degree of histological damage and a higher ratio of apoptotic tubular cells, as well as kidney dysfunction upon cisplatin- and IRI-induced AKI models. Conversely, MCM4 overexpression ameliorated the severity of kidney injury and promoted regenerative capacity of tubular cells during AKI development. Mechanically, loss of MCM4 induced the expression of p53-binding protein 1, activating the p53/p21 pathway and exacerbating AKI progression. Additional, MAD2B, as an upstream molecule of MCM4, regulates the transcription level of MCM4 by affecting the level of E2F1.
Conclusions
These findings demonstrate that MCM4 upregulation during AKI development is an adaptive response that preserves tubular cell regenerative capacity and limits the severity of renal injury, thus highlighting the potential value of MCM4 as a biomarker or therapeutic target in patients with AKI.
期刊介绍:
Journal of Advanced Research (J. Adv. Res.) is an applied/natural sciences, peer-reviewed journal that focuses on interdisciplinary research. The journal aims to contribute to applied research and knowledge worldwide through the publication of original and high-quality research articles in the fields of Medicine, Pharmaceutical Sciences, Dentistry, Physical Therapy, Veterinary Medicine, and Basic and Biological Sciences.
The following abstracting and indexing services cover the Journal of Advanced Research: PubMed/Medline, Essential Science Indicators, Web of Science, Scopus, PubMed Central, PubMed, Science Citation Index Expanded, Directory of Open Access Journals (DOAJ), and INSPEC.