{"title":"网络中目标控制与估计的可控性与可观测性对偶性","authors":"Arthur N. Montanari;Chao Duan;Adilson E. Motter","doi":"10.1109/TAC.2025.3552001","DOIUrl":null,"url":null,"abstract":"Output controllability and functional observability are properties that enable, respectively, the control and estimation of <italic>part</i> of the state vector. These notions are of utmost importance in applications to high-dimensional systems, such as large-scale networks, in which only a target subset of variables (nodes) is sought to be controlled or estimated. Although the duality between full-state controllability and observability is well established, the characterization of the duality between their generalized counterparts remains an outstanding problem. Here, we establish both the weak and the strong duality between output controllability and functional observability. Specifically, we show that functional observability of a system implies output controllability of a dual system (weak duality), and that under a certain geometric condition the converse holds (strong duality). As an application of the strong duality, we derive a necessary and sufficient condition for target control via static feedback. This allow us to establish a separation principle between the design of target controllers and the design of functional observers in closed-loop systems. These results generalize the classical duality and separation principles in modern control theory.","PeriodicalId":13201,"journal":{"name":"IEEE Transactions on Automatic Control","volume":"70 8","pages":"5584-5591"},"PeriodicalIF":7.0000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Duality Between Controllability and Observability for Target Control and Estimation in Networks\",\"authors\":\"Arthur N. Montanari;Chao Duan;Adilson E. Motter\",\"doi\":\"10.1109/TAC.2025.3552001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Output controllability and functional observability are properties that enable, respectively, the control and estimation of <italic>part</i> of the state vector. These notions are of utmost importance in applications to high-dimensional systems, such as large-scale networks, in which only a target subset of variables (nodes) is sought to be controlled or estimated. Although the duality between full-state controllability and observability is well established, the characterization of the duality between their generalized counterparts remains an outstanding problem. Here, we establish both the weak and the strong duality between output controllability and functional observability. Specifically, we show that functional observability of a system implies output controllability of a dual system (weak duality), and that under a certain geometric condition the converse holds (strong duality). As an application of the strong duality, we derive a necessary and sufficient condition for target control via static feedback. This allow us to establish a separation principle between the design of target controllers and the design of functional observers in closed-loop systems. These results generalize the classical duality and separation principles in modern control theory.\",\"PeriodicalId\":13201,\"journal\":{\"name\":\"IEEE Transactions on Automatic Control\",\"volume\":\"70 8\",\"pages\":\"5584-5591\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Automatic Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10930508/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Automatic Control","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10930508/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Duality Between Controllability and Observability for Target Control and Estimation in Networks
Output controllability and functional observability are properties that enable, respectively, the control and estimation of part of the state vector. These notions are of utmost importance in applications to high-dimensional systems, such as large-scale networks, in which only a target subset of variables (nodes) is sought to be controlled or estimated. Although the duality between full-state controllability and observability is well established, the characterization of the duality between their generalized counterparts remains an outstanding problem. Here, we establish both the weak and the strong duality between output controllability and functional observability. Specifically, we show that functional observability of a system implies output controllability of a dual system (weak duality), and that under a certain geometric condition the converse holds (strong duality). As an application of the strong duality, we derive a necessary and sufficient condition for target control via static feedback. This allow us to establish a separation principle between the design of target controllers and the design of functional observers in closed-loop systems. These results generalize the classical duality and separation principles in modern control theory.
期刊介绍:
In the IEEE Transactions on Automatic Control, the IEEE Control Systems Society publishes high-quality papers on the theory, design, and applications of control engineering. Two types of contributions are regularly considered:
1) Papers: Presentation of significant research, development, or application of control concepts.
2) Technical Notes and Correspondence: Brief technical notes, comments on published areas or established control topics, corrections to papers and notes published in the Transactions.
In addition, special papers (tutorials, surveys, and perspectives on the theory and applications of control systems topics) are solicited.