自适应胆红素纳米载体可缓解肺氧化应激和炎症,用于急性肺损伤治疗

IF 11.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Longfa Kou, Yitianhe Xu, Shize Li, Zhinan He, Di Huang, Zhanzheng Ye, Yixuan Zhu, Yunzhi Wang, Xinyu Di, Yuqi Yan, Yinhao Lin, Wanling Zhu, Xianbao Shi, Hailin Zhang, Ruijie Chen
{"title":"自适应胆红素纳米载体可缓解肺氧化应激和炎症,用于急性肺损伤治疗","authors":"Longfa Kou, Yitianhe Xu, Shize Li, Zhinan He, Di Huang, Zhanzheng Ye, Yixuan Zhu, Yunzhi Wang, Xinyu Di, Yuqi Yan, Yinhao Lin, Wanling Zhu, Xianbao Shi, Hailin Zhang, Ruijie Chen","doi":"10.1016/j.jare.2025.03.027","DOIUrl":null,"url":null,"abstract":"<h3>Introduction</h3>Acute lung injury (ALI) is a life-threatening condition characterized by rapidly progressing respiratory distress and hypoxemia. Oxidative stress-induced inflammation in lung tissue plays a crucial role in the progression of ALI. Excessive generation of reactive oxygen species (ROS) in the pulmonary microenvironment activates inflammatory signaling pathways, enhancing the transcription of pro-inflammatory factors and ultimately leading to tissue necrosis.<h3>Objectives</h3>Bilirubin (BR), an exceptional endogenous antioxidant, possesses the ability to counteract elevated levels of reactive oxygen species (ROS) through direct reactions or by inducing antioxidant systems such as Nrf2/HO-1 signaling. However, its limited solubility poses a hindrance to further applications. Hence, it is imperative to develop a suitable bilirubin-based system for biological utilization.<h3>Methods</h3>In this study, we developed a bilirubin-based ROS-sensitive adaptive nanoscavenger (GP@BR) by co-assembling bilirubin-conjugated glycol chitosan (GC-BR) and bilirubin-conjugated polyethylene glycol (PEG-BR), aiming to alleviate oxidative stress for ALI treatment.<h3>Results</h3>The different conjugations endowed the bilirubin derivatives with varying sensitivity towards reacting with ROS, enabling GP@BR to exert antioxidative properties specifically in oxidative environments on demand. Besides its excellent antioxidant properties, GP@BR also demonstrated the ability to absorb excess inflammatory cytokines. Moreover, our optimized nanoscavenger facilitated bilirubin transport across the mucosal layer on pulmonary epithelial cells. In vivo studies confirmed that GP@BR significantly improved ALI symptoms and suppressed pulmonary fibrosis.<h3>Conclusion</h3>This study highlighted the potential of ROS-sensitive adaptive properties and multiple actions of this nanoscavenger in the treatment of ALI.","PeriodicalId":14952,"journal":{"name":"Journal of Advanced Research","volume":"43 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive bilirubin nanoscavenger alleviates pulmonary oxidative stress and inflammation for acute lung injury therapy\",\"authors\":\"Longfa Kou, Yitianhe Xu, Shize Li, Zhinan He, Di Huang, Zhanzheng Ye, Yixuan Zhu, Yunzhi Wang, Xinyu Di, Yuqi Yan, Yinhao Lin, Wanling Zhu, Xianbao Shi, Hailin Zhang, Ruijie Chen\",\"doi\":\"10.1016/j.jare.2025.03.027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Introduction</h3>Acute lung injury (ALI) is a life-threatening condition characterized by rapidly progressing respiratory distress and hypoxemia. Oxidative stress-induced inflammation in lung tissue plays a crucial role in the progression of ALI. Excessive generation of reactive oxygen species (ROS) in the pulmonary microenvironment activates inflammatory signaling pathways, enhancing the transcription of pro-inflammatory factors and ultimately leading to tissue necrosis.<h3>Objectives</h3>Bilirubin (BR), an exceptional endogenous antioxidant, possesses the ability to counteract elevated levels of reactive oxygen species (ROS) through direct reactions or by inducing antioxidant systems such as Nrf2/HO-1 signaling. However, its limited solubility poses a hindrance to further applications. Hence, it is imperative to develop a suitable bilirubin-based system for biological utilization.<h3>Methods</h3>In this study, we developed a bilirubin-based ROS-sensitive adaptive nanoscavenger (GP@BR) by co-assembling bilirubin-conjugated glycol chitosan (GC-BR) and bilirubin-conjugated polyethylene glycol (PEG-BR), aiming to alleviate oxidative stress for ALI treatment.<h3>Results</h3>The different conjugations endowed the bilirubin derivatives with varying sensitivity towards reacting with ROS, enabling GP@BR to exert antioxidative properties specifically in oxidative environments on demand. Besides its excellent antioxidant properties, GP@BR also demonstrated the ability to absorb excess inflammatory cytokines. Moreover, our optimized nanoscavenger facilitated bilirubin transport across the mucosal layer on pulmonary epithelial cells. In vivo studies confirmed that GP@BR significantly improved ALI symptoms and suppressed pulmonary fibrosis.<h3>Conclusion</h3>This study highlighted the potential of ROS-sensitive adaptive properties and multiple actions of this nanoscavenger in the treatment of ALI.\",\"PeriodicalId\":14952,\"journal\":{\"name\":\"Journal of Advanced Research\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Research\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jare.2025.03.027\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.jare.2025.03.027","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。

Adaptive bilirubin nanoscavenger alleviates pulmonary oxidative stress and inflammation for acute lung injury therapy

Adaptive bilirubin nanoscavenger alleviates pulmonary oxidative stress and inflammation for acute lung injury therapy

Introduction

Acute lung injury (ALI) is a life-threatening condition characterized by rapidly progressing respiratory distress and hypoxemia. Oxidative stress-induced inflammation in lung tissue plays a crucial role in the progression of ALI. Excessive generation of reactive oxygen species (ROS) in the pulmonary microenvironment activates inflammatory signaling pathways, enhancing the transcription of pro-inflammatory factors and ultimately leading to tissue necrosis.

Objectives

Bilirubin (BR), an exceptional endogenous antioxidant, possesses the ability to counteract elevated levels of reactive oxygen species (ROS) through direct reactions or by inducing antioxidant systems such as Nrf2/HO-1 signaling. However, its limited solubility poses a hindrance to further applications. Hence, it is imperative to develop a suitable bilirubin-based system for biological utilization.

Methods

In this study, we developed a bilirubin-based ROS-sensitive adaptive nanoscavenger (GP@BR) by co-assembling bilirubin-conjugated glycol chitosan (GC-BR) and bilirubin-conjugated polyethylene glycol (PEG-BR), aiming to alleviate oxidative stress for ALI treatment.

Results

The different conjugations endowed the bilirubin derivatives with varying sensitivity towards reacting with ROS, enabling GP@BR to exert antioxidative properties specifically in oxidative environments on demand. Besides its excellent antioxidant properties, GP@BR also demonstrated the ability to absorb excess inflammatory cytokines. Moreover, our optimized nanoscavenger facilitated bilirubin transport across the mucosal layer on pulmonary epithelial cells. In vivo studies confirmed that GP@BR significantly improved ALI symptoms and suppressed pulmonary fibrosis.

Conclusion

This study highlighted the potential of ROS-sensitive adaptive properties and multiple actions of this nanoscavenger in the treatment of ALI.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Advanced Research
Journal of Advanced Research Multidisciplinary-Multidisciplinary
CiteScore
21.60
自引率
0.90%
发文量
280
审稿时长
12 weeks
期刊介绍: Journal of Advanced Research (J. Adv. Res.) is an applied/natural sciences, peer-reviewed journal that focuses on interdisciplinary research. The journal aims to contribute to applied research and knowledge worldwide through the publication of original and high-quality research articles in the fields of Medicine, Pharmaceutical Sciences, Dentistry, Physical Therapy, Veterinary Medicine, and Basic and Biological Sciences. The following abstracting and indexing services cover the Journal of Advanced Research: PubMed/Medline, Essential Science Indicators, Web of Science, Scopus, PubMed Central, PubMed, Science Citation Index Expanded, Directory of Open Access Journals (DOAJ), and INSPEC.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信