{"title":"自适应胆红素纳米载体可缓解肺氧化应激和炎症,用于急性肺损伤治疗","authors":"Longfa Kou, Yitianhe Xu, Shize Li, Zhinan He, Di Huang, Zhanzheng Ye, Yixuan Zhu, Yunzhi Wang, Xinyu Di, Yuqi Yan, Yinhao Lin, Wanling Zhu, Xianbao Shi, Hailin Zhang, Ruijie Chen","doi":"10.1016/j.jare.2025.03.027","DOIUrl":null,"url":null,"abstract":"<h3>Introduction</h3>Acute lung injury (ALI) is a life-threatening condition characterized by rapidly progressing respiratory distress and hypoxemia. Oxidative stress-induced inflammation in lung tissue plays a crucial role in the progression of ALI. Excessive generation of reactive oxygen species (ROS) in the pulmonary microenvironment activates inflammatory signaling pathways, enhancing the transcription of pro-inflammatory factors and ultimately leading to tissue necrosis.<h3>Objectives</h3>Bilirubin (BR), an exceptional endogenous antioxidant, possesses the ability to counteract elevated levels of reactive oxygen species (ROS) through direct reactions or by inducing antioxidant systems such as Nrf2/HO-1 signaling. However, its limited solubility poses a hindrance to further applications. Hence, it is imperative to develop a suitable bilirubin-based system for biological utilization.<h3>Methods</h3>In this study, we developed a bilirubin-based ROS-sensitive adaptive nanoscavenger (GP@BR) by co-assembling bilirubin-conjugated glycol chitosan (GC-BR) and bilirubin-conjugated polyethylene glycol (PEG-BR), aiming to alleviate oxidative stress for ALI treatment.<h3>Results</h3>The different conjugations endowed the bilirubin derivatives with varying sensitivity towards reacting with ROS, enabling GP@BR to exert antioxidative properties specifically in oxidative environments on demand. Besides its excellent antioxidant properties, GP@BR also demonstrated the ability to absorb excess inflammatory cytokines. Moreover, our optimized nanoscavenger facilitated bilirubin transport across the mucosal layer on pulmonary epithelial cells. In vivo studies confirmed that GP@BR significantly improved ALI symptoms and suppressed pulmonary fibrosis.<h3>Conclusion</h3>This study highlighted the potential of ROS-sensitive adaptive properties and multiple actions of this nanoscavenger in the treatment of ALI.","PeriodicalId":14952,"journal":{"name":"Journal of Advanced Research","volume":"43 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive bilirubin nanoscavenger alleviates pulmonary oxidative stress and inflammation for acute lung injury therapy\",\"authors\":\"Longfa Kou, Yitianhe Xu, Shize Li, Zhinan He, Di Huang, Zhanzheng Ye, Yixuan Zhu, Yunzhi Wang, Xinyu Di, Yuqi Yan, Yinhao Lin, Wanling Zhu, Xianbao Shi, Hailin Zhang, Ruijie Chen\",\"doi\":\"10.1016/j.jare.2025.03.027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Introduction</h3>Acute lung injury (ALI) is a life-threatening condition characterized by rapidly progressing respiratory distress and hypoxemia. Oxidative stress-induced inflammation in lung tissue plays a crucial role in the progression of ALI. Excessive generation of reactive oxygen species (ROS) in the pulmonary microenvironment activates inflammatory signaling pathways, enhancing the transcription of pro-inflammatory factors and ultimately leading to tissue necrosis.<h3>Objectives</h3>Bilirubin (BR), an exceptional endogenous antioxidant, possesses the ability to counteract elevated levels of reactive oxygen species (ROS) through direct reactions or by inducing antioxidant systems such as Nrf2/HO-1 signaling. However, its limited solubility poses a hindrance to further applications. Hence, it is imperative to develop a suitable bilirubin-based system for biological utilization.<h3>Methods</h3>In this study, we developed a bilirubin-based ROS-sensitive adaptive nanoscavenger (GP@BR) by co-assembling bilirubin-conjugated glycol chitosan (GC-BR) and bilirubin-conjugated polyethylene glycol (PEG-BR), aiming to alleviate oxidative stress for ALI treatment.<h3>Results</h3>The different conjugations endowed the bilirubin derivatives with varying sensitivity towards reacting with ROS, enabling GP@BR to exert antioxidative properties specifically in oxidative environments on demand. Besides its excellent antioxidant properties, GP@BR also demonstrated the ability to absorb excess inflammatory cytokines. Moreover, our optimized nanoscavenger facilitated bilirubin transport across the mucosal layer on pulmonary epithelial cells. In vivo studies confirmed that GP@BR significantly improved ALI symptoms and suppressed pulmonary fibrosis.<h3>Conclusion</h3>This study highlighted the potential of ROS-sensitive adaptive properties and multiple actions of this nanoscavenger in the treatment of ALI.\",\"PeriodicalId\":14952,\"journal\":{\"name\":\"Journal of Advanced Research\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Research\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jare.2025.03.027\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.jare.2025.03.027","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Adaptive bilirubin nanoscavenger alleviates pulmonary oxidative stress and inflammation for acute lung injury therapy
Introduction
Acute lung injury (ALI) is a life-threatening condition characterized by rapidly progressing respiratory distress and hypoxemia. Oxidative stress-induced inflammation in lung tissue plays a crucial role in the progression of ALI. Excessive generation of reactive oxygen species (ROS) in the pulmonary microenvironment activates inflammatory signaling pathways, enhancing the transcription of pro-inflammatory factors and ultimately leading to tissue necrosis.
Objectives
Bilirubin (BR), an exceptional endogenous antioxidant, possesses the ability to counteract elevated levels of reactive oxygen species (ROS) through direct reactions or by inducing antioxidant systems such as Nrf2/HO-1 signaling. However, its limited solubility poses a hindrance to further applications. Hence, it is imperative to develop a suitable bilirubin-based system for biological utilization.
Methods
In this study, we developed a bilirubin-based ROS-sensitive adaptive nanoscavenger (GP@BR) by co-assembling bilirubin-conjugated glycol chitosan (GC-BR) and bilirubin-conjugated polyethylene glycol (PEG-BR), aiming to alleviate oxidative stress for ALI treatment.
Results
The different conjugations endowed the bilirubin derivatives with varying sensitivity towards reacting with ROS, enabling GP@BR to exert antioxidative properties specifically in oxidative environments on demand. Besides its excellent antioxidant properties, GP@BR also demonstrated the ability to absorb excess inflammatory cytokines. Moreover, our optimized nanoscavenger facilitated bilirubin transport across the mucosal layer on pulmonary epithelial cells. In vivo studies confirmed that GP@BR significantly improved ALI symptoms and suppressed pulmonary fibrosis.
Conclusion
This study highlighted the potential of ROS-sensitive adaptive properties and multiple actions of this nanoscavenger in the treatment of ALI.
期刊介绍:
Journal of Advanced Research (J. Adv. Res.) is an applied/natural sciences, peer-reviewed journal that focuses on interdisciplinary research. The journal aims to contribute to applied research and knowledge worldwide through the publication of original and high-quality research articles in the fields of Medicine, Pharmaceutical Sciences, Dentistry, Physical Therapy, Veterinary Medicine, and Basic and Biological Sciences.
The following abstracting and indexing services cover the Journal of Advanced Research: PubMed/Medline, Essential Science Indicators, Web of Science, Scopus, PubMed Central, PubMed, Science Citation Index Expanded, Directory of Open Access Journals (DOAJ), and INSPEC.