Quan Yuan , Jia-Wei Tang , Jie Chen , Yi-Wen Liao , Wen-Wen Zhang , Xin-Ru Wen , Xin Liu , Hui-Jin Chen , Liang Wang
{"title":"SERS- atb:抗生素SERS光谱可视化和深度学习识别的综合数据库服务器","authors":"Quan Yuan , Jia-Wei Tang , Jie Chen , Yi-Wen Liao , Wen-Wen Zhang , Xin-Ru Wen , Xin Liu , Hui-Jin Chen , Liang Wang","doi":"10.1016/j.envpol.2025.126083","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid and accurate identification of antibiotics in environmental samples is critical for addressing the growing concern of antibiotic pollution, particularly in water sources. Antibiotic contamination poses a significant risk to ecosystems and human health by contributing to the spread of antibiotic resistance. Surface-enhanced Raman spectroscopy (SERS), known for its high sensitivity and specificity, is a powerful tool for antibiotic identification. However, its broader application is constrained by the lack of a large-scale antibiotic spectral database crucial for environmental and clinical use. To address this need, we systematically collected 12,800 SERS spectra for 200 environmentally relevant antibiotics and developed an open-access, web-based database at <span><span>http://sers.test.bniu.net/</span><svg><path></path></svg></span>. We compared six machine learning algorithms with a convolutional neural network (CNN) model, which achieved the highest accuracy at 98.94%, making it the preferred database model. For external validation, CNN demonstrated an accuracy of 82.8%, underscoring its reliability and practicality for real-world applications. The SERS database and CNN prediction model represent a novel resource for environmental monitoring, offering significant advantages in terms of accessibility, speed, and scalability. This study establishes the large-scale, public SERS spectral databases for antibiotics, facilitating the integration of SERS into environmental programs, with the potential to improve antibiotic detection, pollution management, and resistance mitigation.</div></div>","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":"373 ","pages":"Article 126083"},"PeriodicalIF":7.3000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SERS-ATB: A comprehensive database server for antibiotic SERS spectral visualization and deep-learning identification\",\"authors\":\"Quan Yuan , Jia-Wei Tang , Jie Chen , Yi-Wen Liao , Wen-Wen Zhang , Xin-Ru Wen , Xin Liu , Hui-Jin Chen , Liang Wang\",\"doi\":\"10.1016/j.envpol.2025.126083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The rapid and accurate identification of antibiotics in environmental samples is critical for addressing the growing concern of antibiotic pollution, particularly in water sources. Antibiotic contamination poses a significant risk to ecosystems and human health by contributing to the spread of antibiotic resistance. Surface-enhanced Raman spectroscopy (SERS), known for its high sensitivity and specificity, is a powerful tool for antibiotic identification. However, its broader application is constrained by the lack of a large-scale antibiotic spectral database crucial for environmental and clinical use. To address this need, we systematically collected 12,800 SERS spectra for 200 environmentally relevant antibiotics and developed an open-access, web-based database at <span><span>http://sers.test.bniu.net/</span><svg><path></path></svg></span>. We compared six machine learning algorithms with a convolutional neural network (CNN) model, which achieved the highest accuracy at 98.94%, making it the preferred database model. For external validation, CNN demonstrated an accuracy of 82.8%, underscoring its reliability and practicality for real-world applications. The SERS database and CNN prediction model represent a novel resource for environmental monitoring, offering significant advantages in terms of accessibility, speed, and scalability. This study establishes the large-scale, public SERS spectral databases for antibiotics, facilitating the integration of SERS into environmental programs, with the potential to improve antibiotic detection, pollution management, and resistance mitigation.</div></div>\",\"PeriodicalId\":311,\"journal\":{\"name\":\"Environmental Pollution\",\"volume\":\"373 \",\"pages\":\"Article 126083\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Pollution\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0269749125004567\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Pollution","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0269749125004567","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
SERS-ATB: A comprehensive database server for antibiotic SERS spectral visualization and deep-learning identification
The rapid and accurate identification of antibiotics in environmental samples is critical for addressing the growing concern of antibiotic pollution, particularly in water sources. Antibiotic contamination poses a significant risk to ecosystems and human health by contributing to the spread of antibiotic resistance. Surface-enhanced Raman spectroscopy (SERS), known for its high sensitivity and specificity, is a powerful tool for antibiotic identification. However, its broader application is constrained by the lack of a large-scale antibiotic spectral database crucial for environmental and clinical use. To address this need, we systematically collected 12,800 SERS spectra for 200 environmentally relevant antibiotics and developed an open-access, web-based database at http://sers.test.bniu.net/. We compared six machine learning algorithms with a convolutional neural network (CNN) model, which achieved the highest accuracy at 98.94%, making it the preferred database model. For external validation, CNN demonstrated an accuracy of 82.8%, underscoring its reliability and practicality for real-world applications. The SERS database and CNN prediction model represent a novel resource for environmental monitoring, offering significant advantages in terms of accessibility, speed, and scalability. This study establishes the large-scale, public SERS spectral databases for antibiotics, facilitating the integration of SERS into environmental programs, with the potential to improve antibiotic detection, pollution management, and resistance mitigation.
期刊介绍:
Environmental Pollution is an international peer-reviewed journal that publishes high-quality research papers and review articles covering all aspects of environmental pollution and its impacts on ecosystems and human health.
Subject areas include, but are not limited to:
• Sources and occurrences of pollutants that are clearly defined and measured in environmental compartments, food and food-related items, and human bodies;
• Interlinks between contaminant exposure and biological, ecological, and human health effects, including those of climate change;
• Contaminants of emerging concerns (including but not limited to antibiotic resistant microorganisms or genes, microplastics/nanoplastics, electronic wastes, light, and noise) and/or their biological, ecological, or human health effects;
• Laboratory and field studies on the remediation/mitigation of environmental pollution via new techniques and with clear links to biological, ecological, or human health effects;
• Modeling of pollution processes, patterns, or trends that is of clear environmental and/or human health interest;
• New techniques that measure and examine environmental occurrences, transport, behavior, and effects of pollutants within the environment or the laboratory, provided that they can be clearly used to address problems within regional or global environmental compartments.