油酸修饰TiO2和烷基聚硫在形成极压摩擦膜中的协同效应:机理研究

IF 6.3 1区 工程技术 Q1 ENGINEERING, MECHANICAL
Kai Zeng, Hongfei Shi, Liang Cheng, Li Zhang, Liang Feng, Hengyi Lu, Wenjing Hu, Jiusheng Li
{"title":"油酸修饰TiO2和烷基聚硫在形成极压摩擦膜中的协同效应:机理研究","authors":"Kai Zeng, Hongfei Shi, Liang Cheng, Li Zhang, Liang Feng, Hengyi Lu, Wenjing Hu, Jiusheng Li","doi":"10.26599/frict.2025.9441098","DOIUrl":null,"url":null,"abstract":"<p>The synergistic effect of nanoparticles (NPs) with alkyl polysulfides represents a promising avenue for the enhancement of extreme pressure (EP) performance in lubricants, potentially reducing the reliance on sulfur-containing additives. However, the underlying synergistic mechanism remains unclear. In this study, oleic acid-modified titanium dioxide (TiO<sub>2</sub>-OA) NPs and dialkyl pentasulfide (DPS) formed a mechanically interlocked EP tribo-film with a maximum thickness of about 1.4 μm, demonstrating excellent load-bearing capabilities up to 7,256 N (6.1 GPa). Under conditions of EP friction, the addition of TiO<sub>2</sub>-OA NPs facilitates the development of a robust tribo-film of substantial thickness, which in turn bolsters the load-bearing capability of the lubricating oil. Surface analysis of EP wear scars using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS) showed that TiO<sub>2</sub>-OA NPs were rapidly deposited and enriched at the friction interface with increasing load (3,530-7,256 N) and friction time (0-10 s), which in turn compensated in-situ the wear generated by extreme shear. Cross-sectional analysis of EP wear scars indicates that the preferential formation of ferrous sulfide (FeS) and subsequent rapid enrichment and mechanical interlocking of TiO<sub>2</sub>-OA NPs are essential for preventing welding and improving EP performance. The study presents novel insights into the synergistic mechanisms of NPs with sulfur-containing additives, advancing the widespread implementation and progress of NPs in the field of tribology.</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":"55 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic effects of oleic acid modified TiO2 and alkyl polysulfide in forming extreme pressure tribo-films: A mechanistic study\",\"authors\":\"Kai Zeng, Hongfei Shi, Liang Cheng, Li Zhang, Liang Feng, Hengyi Lu, Wenjing Hu, Jiusheng Li\",\"doi\":\"10.26599/frict.2025.9441098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The synergistic effect of nanoparticles (NPs) with alkyl polysulfides represents a promising avenue for the enhancement of extreme pressure (EP) performance in lubricants, potentially reducing the reliance on sulfur-containing additives. However, the underlying synergistic mechanism remains unclear. In this study, oleic acid-modified titanium dioxide (TiO<sub>2</sub>-OA) NPs and dialkyl pentasulfide (DPS) formed a mechanically interlocked EP tribo-film with a maximum thickness of about 1.4 μm, demonstrating excellent load-bearing capabilities up to 7,256 N (6.1 GPa). Under conditions of EP friction, the addition of TiO<sub>2</sub>-OA NPs facilitates the development of a robust tribo-film of substantial thickness, which in turn bolsters the load-bearing capability of the lubricating oil. Surface analysis of EP wear scars using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS) showed that TiO<sub>2</sub>-OA NPs were rapidly deposited and enriched at the friction interface with increasing load (3,530-7,256 N) and friction time (0-10 s), which in turn compensated in-situ the wear generated by extreme shear. Cross-sectional analysis of EP wear scars indicates that the preferential formation of ferrous sulfide (FeS) and subsequent rapid enrichment and mechanical interlocking of TiO<sub>2</sub>-OA NPs are essential for preventing welding and improving EP performance. The study presents novel insights into the synergistic mechanisms of NPs with sulfur-containing additives, advancing the widespread implementation and progress of NPs in the field of tribology.</p>\",\"PeriodicalId\":12442,\"journal\":{\"name\":\"Friction\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Friction\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.26599/frict.2025.9441098\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Friction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.26599/frict.2025.9441098","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

纳米颗粒(NPs)与烷基聚硫化物的协同作用为提高润滑油的极压(EP)性能提供了一条有前景的途径,有可能减少对含硫添加剂的依赖。然而,潜在的协同机制尚不清楚。在本研究中,油酸修饰的二氧化钛(TiO2-OA) NPs和二烷基五硫醚(DPS)形成了机械互锁的EP摩擦膜,最大厚度约为1.4 μm,具有优异的承载能力,最高可达7256 N (6.1 GPa)。在极压摩擦条件下,TiO2-OA NPs的加入促进了坚固的摩擦膜的形成,这反过来又增强了润滑油的承载能力。利用扫描电镜(SEM)、能谱(EDS)和x射线光电子能谱(XPS)对EP磨损痕进行表面分析表明,随着载荷(3,530 ~ 7,256 N)和摩擦时间(0 ~ 10 s)的增加,TiO2-OA NPs在摩擦界面处快速沉积富集,从而补偿了极端剪切产生的磨损。EP磨损痕的截面分析表明,硫化亚铁(FeS)的优先形成以及随后TiO2-OA NPs的快速富集和机械联锁是防止焊接和提高EP性能的关键。该研究为纳米粒子与含硫添加剂的协同作用机制提供了新的见解,推动了纳米粒子在摩擦学领域的广泛应用和进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Synergistic effects of oleic acid modified TiO2 and alkyl polysulfide in forming extreme pressure tribo-films: A mechanistic study

Synergistic effects of oleic acid modified TiO2 and alkyl polysulfide in forming extreme pressure tribo-films: A mechanistic study

The synergistic effect of nanoparticles (NPs) with alkyl polysulfides represents a promising avenue for the enhancement of extreme pressure (EP) performance in lubricants, potentially reducing the reliance on sulfur-containing additives. However, the underlying synergistic mechanism remains unclear. In this study, oleic acid-modified titanium dioxide (TiO2-OA) NPs and dialkyl pentasulfide (DPS) formed a mechanically interlocked EP tribo-film with a maximum thickness of about 1.4 μm, demonstrating excellent load-bearing capabilities up to 7,256 N (6.1 GPa). Under conditions of EP friction, the addition of TiO2-OA NPs facilitates the development of a robust tribo-film of substantial thickness, which in turn bolsters the load-bearing capability of the lubricating oil. Surface analysis of EP wear scars using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS) showed that TiO2-OA NPs were rapidly deposited and enriched at the friction interface with increasing load (3,530-7,256 N) and friction time (0-10 s), which in turn compensated in-situ the wear generated by extreme shear. Cross-sectional analysis of EP wear scars indicates that the preferential formation of ferrous sulfide (FeS) and subsequent rapid enrichment and mechanical interlocking of TiO2-OA NPs are essential for preventing welding and improving EP performance. The study presents novel insights into the synergistic mechanisms of NPs with sulfur-containing additives, advancing the widespread implementation and progress of NPs in the field of tribology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Friction
Friction Engineering-Mechanical Engineering
CiteScore
12.90
自引率
13.20%
发文量
324
审稿时长
13 weeks
期刊介绍: Friction is a peer-reviewed international journal for the publication of theoretical and experimental research works related to the friction, lubrication and wear. Original, high quality research papers and review articles on all aspects of tribology are welcome, including, but are not limited to, a variety of topics, such as: Friction: Origin of friction, Friction theories, New phenomena of friction, Nano-friction, Ultra-low friction, Molecular friction, Ultra-high friction, Friction at high speed, Friction at high temperature or low temperature, Friction at solid/liquid interfaces, Bio-friction, Adhesion, etc. Lubrication: Superlubricity, Green lubricants, Nano-lubrication, Boundary lubrication, Thin film lubrication, Elastohydrodynamic lubrication, Mixed lubrication, New lubricants, New additives, Gas lubrication, Solid lubrication, etc. Wear: Wear materials, Wear mechanism, Wear models, Wear in severe conditions, Wear measurement, Wear monitoring, etc. Surface Engineering: Surface texturing, Molecular films, Surface coatings, Surface modification, Bionic surfaces, etc. Basic Sciences: Tribology system, Principles of tribology, Thermodynamics of tribo-systems, Micro-fluidics, Thermal stability of tribo-systems, etc. Friction is an open access journal. It is published quarterly by Tsinghua University Press and Springer, and sponsored by the State Key Laboratory of Tribology (TsinghuaUniversity) and the Tribology Institute of Chinese Mechanical Engineering Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信