层状钒酸钠(NaV8O20)纳米带:用于钠离子存储的新型高性能假电容材料

IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Amol S. Vedpathak, Shrishreshtha A. Sahu, Tanuja N. Shinde, Shubham S. Kalyane, Sambhaji S. Warule, Ramchandra S. Kalubarme, Aditya Narayan Singh, Ravindra N. Bulakhe, Ji Man Kim and Shrikrishna D. Sartale
{"title":"层状钒酸钠(NaV8O20)纳米带:用于钠离子存储的新型高性能假电容材料","authors":"Amol S. Vedpathak, Shrishreshtha A. Sahu, Tanuja N. Shinde, Shubham S. Kalyane, Sambhaji S. Warule, Ramchandra S. Kalubarme, Aditya Narayan Singh, Ravindra N. Bulakhe, Ji Man Kim and Shrikrishna D. Sartale","doi":"10.1039/D4TA08624D","DOIUrl":null,"url":null,"abstract":"<p >Multifunctional layered nanostructures have attracted great attention for next-generation electrochemical supercapacitors and metal-ion batteries. Herein, we use a hydrothermal method to demonstrate the synthesis of 1D and layered sodium vanadate (NaV<small><sub>8</sub></small>O<small><sub>20</sub></small>) nanobelts architecture. These NaV<small><sub>8</sub></small>O<small><sub>20</sub></small> nanobelts demonstrate outstanding electrochemical performance in supercapacitors (SCs) and sodium-ion batteries (SIBs). The possible formation mechanism of NaV<small><sub>8</sub></small>O<small><sub>20</sub></small> nanobelts is briefly discussed. Benefiting from the 1D and layered nanostructure, pre-inserted cations, significantly enhanced electrochemical conductivity, and high electroactive surface area, the prepared NaV<small><sub>8</sub></small>O<small><sub>20</sub></small> electrode material exhibited excellent charge storage capacity, favorable rate, and cyclic stability performance. The NaV<small><sub>8</sub></small>O<small><sub>20</sub></small> nanobelts displayed outstanding electrochemical characteristics, including 676 F g<small><sup>−1</sup></small> of specific capacitance, 45 W h kg<small><sup>−1</sup></small> of energy density and 5224 W kg<small><sup>−1</sup></small> of power density. Additionally, on testing in Na-ion batteries, the NaV<small><sub>8</sub></small>O<small><sub>20</sub></small> nanobelts exhibit a discharge capacity of 110 mA h g<small><sup>−1</sup></small> at 10 mA g<small><sup>−1</sup></small> and retain ∼52% capacity after 100 cycles. Along with this, the galvanostatic intermittent titration technique (GITT) measurements reveal a high diffusion coefficient for Na<small><sup>+</sup></small> ions, highlighting the efficient Na<small><sup>+</sup></small> ions transportation within the NaV<small><sub>8</sub></small>O<small><sub>20</sub></small> structure. To our knowledge, this is the first report on the use of NaV<small><sub>8</sub></small>O<small><sub>20</sub></small> nanobelts for both SIBs and SCs, marking a significant contribution to the development of multifunctional materials for energy storage applications.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":" 15","pages":" 10736-10748"},"PeriodicalIF":9.5000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ta/d4ta08624d?page=search","citationCount":"0","resultStr":"{\"title\":\"Layered sodium vanadate (NaV8O20) nanobelts: a new high-performing pseudocapacitive material for sodium-ion storage applications†\",\"authors\":\"Amol S. Vedpathak, Shrishreshtha A. Sahu, Tanuja N. Shinde, Shubham S. Kalyane, Sambhaji S. Warule, Ramchandra S. Kalubarme, Aditya Narayan Singh, Ravindra N. Bulakhe, Ji Man Kim and Shrikrishna D. Sartale\",\"doi\":\"10.1039/D4TA08624D\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Multifunctional layered nanostructures have attracted great attention for next-generation electrochemical supercapacitors and metal-ion batteries. Herein, we use a hydrothermal method to demonstrate the synthesis of 1D and layered sodium vanadate (NaV<small><sub>8</sub></small>O<small><sub>20</sub></small>) nanobelts architecture. These NaV<small><sub>8</sub></small>O<small><sub>20</sub></small> nanobelts demonstrate outstanding electrochemical performance in supercapacitors (SCs) and sodium-ion batteries (SIBs). The possible formation mechanism of NaV<small><sub>8</sub></small>O<small><sub>20</sub></small> nanobelts is briefly discussed. Benefiting from the 1D and layered nanostructure, pre-inserted cations, significantly enhanced electrochemical conductivity, and high electroactive surface area, the prepared NaV<small><sub>8</sub></small>O<small><sub>20</sub></small> electrode material exhibited excellent charge storage capacity, favorable rate, and cyclic stability performance. The NaV<small><sub>8</sub></small>O<small><sub>20</sub></small> nanobelts displayed outstanding electrochemical characteristics, including 676 F g<small><sup>−1</sup></small> of specific capacitance, 45 W h kg<small><sup>−1</sup></small> of energy density and 5224 W kg<small><sup>−1</sup></small> of power density. Additionally, on testing in Na-ion batteries, the NaV<small><sub>8</sub></small>O<small><sub>20</sub></small> nanobelts exhibit a discharge capacity of 110 mA h g<small><sup>−1</sup></small> at 10 mA g<small><sup>−1</sup></small> and retain ∼52% capacity after 100 cycles. Along with this, the galvanostatic intermittent titration technique (GITT) measurements reveal a high diffusion coefficient for Na<small><sup>+</sup></small> ions, highlighting the efficient Na<small><sup>+</sup></small> ions transportation within the NaV<small><sub>8</sub></small>O<small><sub>20</sub></small> structure. To our knowledge, this is the first report on the use of NaV<small><sub>8</sub></small>O<small><sub>20</sub></small> nanobelts for both SIBs and SCs, marking a significant contribution to the development of multifunctional materials for energy storage applications.</p>\",\"PeriodicalId\":82,\"journal\":{\"name\":\"Journal of Materials Chemistry A\",\"volume\":\" 15\",\"pages\":\" 10736-10748\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ta/d4ta08624d?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d4ta08624d\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d4ta08624d","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

多功能层状纳米结构是新一代电化学超级电容器和金属离子电池的研究热点。本文采用水热法制备了一维层状钒酸钠(NaV8O20)纳米带结构。这些NaV8O20纳米带在超级电容器(SCs)和钠离子电池(sib)中表现出优异的电化学性能。简要讨论了纳米带形成的可能机理。得益于纳米结构的一维和层状结构、预插入阳离子、电化学电导率的显著提高和高的电活性表面积,制备的NaV8O20电极材料具有优异的电荷存储能力、良好的倍率和循环稳定性。纳米带的比电容为676 F g−1,能量密度为45 W h kg−1,功率密度为5224 W kg−1。此外,在钠离子电池的测试中,NaV8O20纳米带在10 mA g - 1下表现出110 mA h g - 1的放电容量,并且在100次循环后保持约52%的容量。与此同时,恒流间歇滴定技术(git)测量显示Na+离子的高扩散系数,突出了Na+离子在NaV8O20结构内的高效运输。据我们所知,这是第一份将NaV8O20纳米带用于sib和SCs的报告,标志着对储能应用多功能材料的发展做出了重大贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Layered sodium vanadate (NaV8O20) nanobelts: a new high-performing pseudocapacitive material for sodium-ion storage applications†

Layered sodium vanadate (NaV8O20) nanobelts: a new high-performing pseudocapacitive material for sodium-ion storage applications†

Layered sodium vanadate (NaV8O20) nanobelts: a new high-performing pseudocapacitive material for sodium-ion storage applications†

Multifunctional layered nanostructures have attracted great attention for next-generation electrochemical supercapacitors and metal-ion batteries. Herein, we use a hydrothermal method to demonstrate the synthesis of 1D and layered sodium vanadate (NaV8O20) nanobelts architecture. These NaV8O20 nanobelts demonstrate outstanding electrochemical performance in supercapacitors (SCs) and sodium-ion batteries (SIBs). The possible formation mechanism of NaV8O20 nanobelts is briefly discussed. Benefiting from the 1D and layered nanostructure, pre-inserted cations, significantly enhanced electrochemical conductivity, and high electroactive surface area, the prepared NaV8O20 electrode material exhibited excellent charge storage capacity, favorable rate, and cyclic stability performance. The NaV8O20 nanobelts displayed outstanding electrochemical characteristics, including 676 F g−1 of specific capacitance, 45 W h kg−1 of energy density and 5224 W kg−1 of power density. Additionally, on testing in Na-ion batteries, the NaV8O20 nanobelts exhibit a discharge capacity of 110 mA h g−1 at 10 mA g−1 and retain ∼52% capacity after 100 cycles. Along with this, the galvanostatic intermittent titration technique (GITT) measurements reveal a high diffusion coefficient for Na+ ions, highlighting the efficient Na+ ions transportation within the NaV8O20 structure. To our knowledge, this is the first report on the use of NaV8O20 nanobelts for both SIBs and SCs, marking a significant contribution to the development of multifunctional materials for energy storage applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信