Amol S. Vedpathak, Shrishreshtha A. Sahu, Tanuja N. Shinde, Shubham S. Kalyane, Sambhaji S. Warule, Ramchandra S. Kalubarme, Aditya Narayan Singh, Ravindra N. Bulakhe, Ji Man Kim and Shrikrishna D. Sartale
{"title":"层状钒酸钠(NaV8O20)纳米带:用于钠离子存储的新型高性能假电容材料","authors":"Amol S. Vedpathak, Shrishreshtha A. Sahu, Tanuja N. Shinde, Shubham S. Kalyane, Sambhaji S. Warule, Ramchandra S. Kalubarme, Aditya Narayan Singh, Ravindra N. Bulakhe, Ji Man Kim and Shrikrishna D. Sartale","doi":"10.1039/D4TA08624D","DOIUrl":null,"url":null,"abstract":"<p >Multifunctional layered nanostructures have attracted great attention for next-generation electrochemical supercapacitors and metal-ion batteries. Herein, we use a hydrothermal method to demonstrate the synthesis of 1D and layered sodium vanadate (NaV<small><sub>8</sub></small>O<small><sub>20</sub></small>) nanobelts architecture. These NaV<small><sub>8</sub></small>O<small><sub>20</sub></small> nanobelts demonstrate outstanding electrochemical performance in supercapacitors (SCs) and sodium-ion batteries (SIBs). The possible formation mechanism of NaV<small><sub>8</sub></small>O<small><sub>20</sub></small> nanobelts is briefly discussed. Benefiting from the 1D and layered nanostructure, pre-inserted cations, significantly enhanced electrochemical conductivity, and high electroactive surface area, the prepared NaV<small><sub>8</sub></small>O<small><sub>20</sub></small> electrode material exhibited excellent charge storage capacity, favorable rate, and cyclic stability performance. The NaV<small><sub>8</sub></small>O<small><sub>20</sub></small> nanobelts displayed outstanding electrochemical characteristics, including 676 F g<small><sup>−1</sup></small> of specific capacitance, 45 W h kg<small><sup>−1</sup></small> of energy density and 5224 W kg<small><sup>−1</sup></small> of power density. Additionally, on testing in Na-ion batteries, the NaV<small><sub>8</sub></small>O<small><sub>20</sub></small> nanobelts exhibit a discharge capacity of 110 mA h g<small><sup>−1</sup></small> at 10 mA g<small><sup>−1</sup></small> and retain ∼52% capacity after 100 cycles. Along with this, the galvanostatic intermittent titration technique (GITT) measurements reveal a high diffusion coefficient for Na<small><sup>+</sup></small> ions, highlighting the efficient Na<small><sup>+</sup></small> ions transportation within the NaV<small><sub>8</sub></small>O<small><sub>20</sub></small> structure. To our knowledge, this is the first report on the use of NaV<small><sub>8</sub></small>O<small><sub>20</sub></small> nanobelts for both SIBs and SCs, marking a significant contribution to the development of multifunctional materials for energy storage applications.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":" 15","pages":" 10736-10748"},"PeriodicalIF":9.5000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ta/d4ta08624d?page=search","citationCount":"0","resultStr":"{\"title\":\"Layered sodium vanadate (NaV8O20) nanobelts: a new high-performing pseudocapacitive material for sodium-ion storage applications†\",\"authors\":\"Amol S. Vedpathak, Shrishreshtha A. Sahu, Tanuja N. Shinde, Shubham S. Kalyane, Sambhaji S. Warule, Ramchandra S. Kalubarme, Aditya Narayan Singh, Ravindra N. Bulakhe, Ji Man Kim and Shrikrishna D. Sartale\",\"doi\":\"10.1039/D4TA08624D\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Multifunctional layered nanostructures have attracted great attention for next-generation electrochemical supercapacitors and metal-ion batteries. Herein, we use a hydrothermal method to demonstrate the synthesis of 1D and layered sodium vanadate (NaV<small><sub>8</sub></small>O<small><sub>20</sub></small>) nanobelts architecture. These NaV<small><sub>8</sub></small>O<small><sub>20</sub></small> nanobelts demonstrate outstanding electrochemical performance in supercapacitors (SCs) and sodium-ion batteries (SIBs). The possible formation mechanism of NaV<small><sub>8</sub></small>O<small><sub>20</sub></small> nanobelts is briefly discussed. Benefiting from the 1D and layered nanostructure, pre-inserted cations, significantly enhanced electrochemical conductivity, and high electroactive surface area, the prepared NaV<small><sub>8</sub></small>O<small><sub>20</sub></small> electrode material exhibited excellent charge storage capacity, favorable rate, and cyclic stability performance. The NaV<small><sub>8</sub></small>O<small><sub>20</sub></small> nanobelts displayed outstanding electrochemical characteristics, including 676 F g<small><sup>−1</sup></small> of specific capacitance, 45 W h kg<small><sup>−1</sup></small> of energy density and 5224 W kg<small><sup>−1</sup></small> of power density. Additionally, on testing in Na-ion batteries, the NaV<small><sub>8</sub></small>O<small><sub>20</sub></small> nanobelts exhibit a discharge capacity of 110 mA h g<small><sup>−1</sup></small> at 10 mA g<small><sup>−1</sup></small> and retain ∼52% capacity after 100 cycles. Along with this, the galvanostatic intermittent titration technique (GITT) measurements reveal a high diffusion coefficient for Na<small><sup>+</sup></small> ions, highlighting the efficient Na<small><sup>+</sup></small> ions transportation within the NaV<small><sub>8</sub></small>O<small><sub>20</sub></small> structure. To our knowledge, this is the first report on the use of NaV<small><sub>8</sub></small>O<small><sub>20</sub></small> nanobelts for both SIBs and SCs, marking a significant contribution to the development of multifunctional materials for energy storage applications.</p>\",\"PeriodicalId\":82,\"journal\":{\"name\":\"Journal of Materials Chemistry A\",\"volume\":\" 15\",\"pages\":\" 10736-10748\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ta/d4ta08624d?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d4ta08624d\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d4ta08624d","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
多功能层状纳米结构是新一代电化学超级电容器和金属离子电池的研究热点。本文采用水热法制备了一维层状钒酸钠(NaV8O20)纳米带结构。这些NaV8O20纳米带在超级电容器(SCs)和钠离子电池(sib)中表现出优异的电化学性能。简要讨论了纳米带形成的可能机理。得益于纳米结构的一维和层状结构、预插入阳离子、电化学电导率的显著提高和高的电活性表面积,制备的NaV8O20电极材料具有优异的电荷存储能力、良好的倍率和循环稳定性。纳米带的比电容为676 F g−1,能量密度为45 W h kg−1,功率密度为5224 W kg−1。此外,在钠离子电池的测试中,NaV8O20纳米带在10 mA g - 1下表现出110 mA h g - 1的放电容量,并且在100次循环后保持约52%的容量。与此同时,恒流间歇滴定技术(git)测量显示Na+离子的高扩散系数,突出了Na+离子在NaV8O20结构内的高效运输。据我们所知,这是第一份将NaV8O20纳米带用于sib和SCs的报告,标志着对储能应用多功能材料的发展做出了重大贡献。
Layered sodium vanadate (NaV8O20) nanobelts: a new high-performing pseudocapacitive material for sodium-ion storage applications†
Multifunctional layered nanostructures have attracted great attention for next-generation electrochemical supercapacitors and metal-ion batteries. Herein, we use a hydrothermal method to demonstrate the synthesis of 1D and layered sodium vanadate (NaV8O20) nanobelts architecture. These NaV8O20 nanobelts demonstrate outstanding electrochemical performance in supercapacitors (SCs) and sodium-ion batteries (SIBs). The possible formation mechanism of NaV8O20 nanobelts is briefly discussed. Benefiting from the 1D and layered nanostructure, pre-inserted cations, significantly enhanced electrochemical conductivity, and high electroactive surface area, the prepared NaV8O20 electrode material exhibited excellent charge storage capacity, favorable rate, and cyclic stability performance. The NaV8O20 nanobelts displayed outstanding electrochemical characteristics, including 676 F g−1 of specific capacitance, 45 W h kg−1 of energy density and 5224 W kg−1 of power density. Additionally, on testing in Na-ion batteries, the NaV8O20 nanobelts exhibit a discharge capacity of 110 mA h g−1 at 10 mA g−1 and retain ∼52% capacity after 100 cycles. Along with this, the galvanostatic intermittent titration technique (GITT) measurements reveal a high diffusion coefficient for Na+ ions, highlighting the efficient Na+ ions transportation within the NaV8O20 structure. To our knowledge, this is the first report on the use of NaV8O20 nanobelts for both SIBs and SCs, marking a significant contribution to the development of multifunctional materials for energy storage applications.
期刊介绍:
The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.