基于氢和尿素键的高性能,可回收和多功能丁腈橡胶

IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Lin Wang, Manman Jia, Hui Jiao, Shukang Ti and Dongmei Yue
{"title":"基于氢和尿素键的高性能,可回收和多功能丁腈橡胶","authors":"Lin Wang, Manman Jia, Hui Jiao, Shukang Ti and Dongmei Yue","doi":"10.1039/D4TA09201E","DOIUrl":null,"url":null,"abstract":"<p >Nitrile Butadiene Rubber (NBR) is widely used in aerospace, petroleum exploration, auto parts, and other fields because of its excellent performance. Nevertheless, NBR usually needs to be crosslinked with sulfur or peroxide, which restricts the tensile performance and recyclability of NBR. Herein, a novel strategy was developed to address these issues by introducing dynamic urea bonds into the main chain using a simple, catalyst-free one-pot method. The presence of urea bonds not only provides a large number of hydrogen bonding sites between the molecular chains but also exhibits the remarkable microphase separation properties of thermoplastic elastomers. This approach endows NBR with enhanced dynamic characteristics and significant recyclability. As a result, the as-synthesized multifunctional NBR elastomer (I–A<small><sub>0.5</sub></small>–P<small><sub>0.5</sub></small>) exhibits excellent tensile strength (19.9 MPa), toughness (93.7 MJ m<small><sup>−3</sup></small>), low glass transition temperature (−52 °C), and low compression cold resistance coefficient (0.15 at −55 °C), which are comparable to those of conventionally covalently crosslinked NBR. Importantly, the elastomer can retain its mechanical robustness, chemical structure, and thermal stability after multiple rounds of recycling (after five times of recycling, with a recovery of more than 81%). To broaden the application of NBR products, I–A<small><sub>0.5</sub></small>–P<small><sub>0.5</sub></small> was crosslinked with sulfur, and its performance was compared with NBR vulcanizates of different acrylonitrile contents. It shows excellent oil resistance and low temperature resistance. Surprisingly, it can also possess the ability to be reprocessed multiple times. This new multifunctional thermoplastic NBR elastomer is of great significance in solving the problem of difficult recycling of traditional NBR and is expected to replace traditional covalently cross-linked NBR.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":" 15","pages":" 10749-10759"},"PeriodicalIF":9.5000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-performance, recyclable, and multifunctional nitrile butadiene rubber based on hydrogen and urea bonds†\",\"authors\":\"Lin Wang, Manman Jia, Hui Jiao, Shukang Ti and Dongmei Yue\",\"doi\":\"10.1039/D4TA09201E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Nitrile Butadiene Rubber (NBR) is widely used in aerospace, petroleum exploration, auto parts, and other fields because of its excellent performance. Nevertheless, NBR usually needs to be crosslinked with sulfur or peroxide, which restricts the tensile performance and recyclability of NBR. Herein, a novel strategy was developed to address these issues by introducing dynamic urea bonds into the main chain using a simple, catalyst-free one-pot method. The presence of urea bonds not only provides a large number of hydrogen bonding sites between the molecular chains but also exhibits the remarkable microphase separation properties of thermoplastic elastomers. This approach endows NBR with enhanced dynamic characteristics and significant recyclability. As a result, the as-synthesized multifunctional NBR elastomer (I–A<small><sub>0.5</sub></small>–P<small><sub>0.5</sub></small>) exhibits excellent tensile strength (19.9 MPa), toughness (93.7 MJ m<small><sup>−3</sup></small>), low glass transition temperature (−52 °C), and low compression cold resistance coefficient (0.15 at −55 °C), which are comparable to those of conventionally covalently crosslinked NBR. Importantly, the elastomer can retain its mechanical robustness, chemical structure, and thermal stability after multiple rounds of recycling (after five times of recycling, with a recovery of more than 81%). To broaden the application of NBR products, I–A<small><sub>0.5</sub></small>–P<small><sub>0.5</sub></small> was crosslinked with sulfur, and its performance was compared with NBR vulcanizates of different acrylonitrile contents. It shows excellent oil resistance and low temperature resistance. Surprisingly, it can also possess the ability to be reprocessed multiple times. This new multifunctional thermoplastic NBR elastomer is of great significance in solving the problem of difficult recycling of traditional NBR and is expected to replace traditional covalently cross-linked NBR.</p>\",\"PeriodicalId\":82,\"journal\":{\"name\":\"Journal of Materials Chemistry A\",\"volume\":\" 15\",\"pages\":\" 10749-10759\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d4ta09201e\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d4ta09201e","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

丁腈橡胶(NBR)因其优异的性能被广泛应用于航空航天、石油勘探、汽车零部件等领域。然而,丁腈橡胶通常需要与硫或过氧化氢交联,这限制了丁腈橡胶的拉伸性能和可回收性。本文提出了一种新的策略,通过使用简单、无催化剂的一锅法将动态尿素键引入主链来解决这些问题。尿素键的存在不仅在分子链之间提供了大量的氢键位点,而且表现出热塑性弹性体显著的微相分离特性。该方法使丁腈橡胶具有增强的动态特性和显著的可回收性。结果表明,合成的多功能丁腈橡胶弹性体(I-A0.5-P0.5)具有优异的抗拉强度(19.9 MPa)、韧性(93.7 MJ m - 3)、低玻璃化转变温度(- 52℃)和低抗压冷系数(- 55℃时为0.15),与常规共价交联丁腈橡胶相当。重要的是,该弹性体在多次回收(经过5次回收,回收率超过81%)后仍能保持其机械坚固性、化学结构和热稳定性。为拓宽丁腈橡胶产品的应用范围,将I-A0.5-P0.5与硫交联,并与不同丙烯腈含量的丁腈橡胶硫化胶进行性能比较。它具有优异的耐油性和耐低温性。令人惊讶的是,它还具有多次再加工的能力。这种新型多功能热塑性丁腈橡胶弹性体对解决传统丁腈橡胶回收难的问题具有重要意义,有望取代传统共价交联丁腈橡胶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

High-performance, recyclable, and multifunctional nitrile butadiene rubber based on hydrogen and urea bonds†

High-performance, recyclable, and multifunctional nitrile butadiene rubber based on hydrogen and urea bonds†

High-performance, recyclable, and multifunctional nitrile butadiene rubber based on hydrogen and urea bonds†

Nitrile Butadiene Rubber (NBR) is widely used in aerospace, petroleum exploration, auto parts, and other fields because of its excellent performance. Nevertheless, NBR usually needs to be crosslinked with sulfur or peroxide, which restricts the tensile performance and recyclability of NBR. Herein, a novel strategy was developed to address these issues by introducing dynamic urea bonds into the main chain using a simple, catalyst-free one-pot method. The presence of urea bonds not only provides a large number of hydrogen bonding sites between the molecular chains but also exhibits the remarkable microphase separation properties of thermoplastic elastomers. This approach endows NBR with enhanced dynamic characteristics and significant recyclability. As a result, the as-synthesized multifunctional NBR elastomer (I–A0.5–P0.5) exhibits excellent tensile strength (19.9 MPa), toughness (93.7 MJ m−3), low glass transition temperature (−52 °C), and low compression cold resistance coefficient (0.15 at −55 °C), which are comparable to those of conventionally covalently crosslinked NBR. Importantly, the elastomer can retain its mechanical robustness, chemical structure, and thermal stability after multiple rounds of recycling (after five times of recycling, with a recovery of more than 81%). To broaden the application of NBR products, I–A0.5–P0.5 was crosslinked with sulfur, and its performance was compared with NBR vulcanizates of different acrylonitrile contents. It shows excellent oil resistance and low temperature resistance. Surprisingly, it can also possess the ability to be reprocessed multiple times. This new multifunctional thermoplastic NBR elastomer is of great significance in solving the problem of difficult recycling of traditional NBR and is expected to replace traditional covalently cross-linked NBR.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信