光热氧化石墨烯薄膜与原位蚀刻生长稳定策略可调和图案个人热管理

IF 6.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Yanmei Zhu , Qi Shi , Xinyue Wang , Yuping Du , Haoran Ma , Guoyu Wen , Hairong Yu , Ting Liang , Xingbin Lv , Changjing Cheng
{"title":"光热氧化石墨烯薄膜与原位蚀刻生长稳定策略可调和图案个人热管理","authors":"Yanmei Zhu ,&nbsp;Qi Shi ,&nbsp;Xinyue Wang ,&nbsp;Yuping Du ,&nbsp;Haoran Ma ,&nbsp;Guoyu Wen ,&nbsp;Hairong Yu ,&nbsp;Ting Liang ,&nbsp;Xingbin Lv ,&nbsp;Changjing Cheng","doi":"10.1016/j.jallcom.2025.179868","DOIUrl":null,"url":null,"abstract":"<div><div>The development of advanced photothermal materials for personal thermal management is a prominent research focus, specifically aimed at enhancing thermal comfort and optimizing heat exchange between the human body and the environment. This study presents an innovative design strategy for photothermal graphene oxides (GO) films with in-situ incorporated metal ions, showcasing superior light absorption (up to 97.95 % for the GO-Zn-18 film), high photothermal conversion efficiency (reaching ∼67.2 °C under 1 solar illumination), and robust stability, with an adjustable temperature range spanning from 42.6 °C to 67.2 °C. Numerical analyses and simulations underscore the considerable superiority of the in-situ etching-growth stabilization strategy over conventional film fabrication techniques, allowing for precise temperature adjustment through the control of etching-growth duration. This adaptability facilitates broad applications, which can range from daily personal thermal regulation to high-temperature medical treatments. Moreover, the patterned and large-scale synthesis makes it a promising pathway from laboratory innovation to practical and industrially feasible solutions. The in-situ metal-ion-integrated photothermal GO films thus hold considerable potential in promoting photothermal conversion technologies for highly adaptable personal thermal management solutions.</div></div>","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"1022 ","pages":"Article 179868"},"PeriodicalIF":6.3000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photothermal GO films with in-situ etching-growth stabilization strategy for adjustable and patterned personal thermal management\",\"authors\":\"Yanmei Zhu ,&nbsp;Qi Shi ,&nbsp;Xinyue Wang ,&nbsp;Yuping Du ,&nbsp;Haoran Ma ,&nbsp;Guoyu Wen ,&nbsp;Hairong Yu ,&nbsp;Ting Liang ,&nbsp;Xingbin Lv ,&nbsp;Changjing Cheng\",\"doi\":\"10.1016/j.jallcom.2025.179868\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The development of advanced photothermal materials for personal thermal management is a prominent research focus, specifically aimed at enhancing thermal comfort and optimizing heat exchange between the human body and the environment. This study presents an innovative design strategy for photothermal graphene oxides (GO) films with in-situ incorporated metal ions, showcasing superior light absorption (up to 97.95 % for the GO-Zn-18 film), high photothermal conversion efficiency (reaching ∼67.2 °C under 1 solar illumination), and robust stability, with an adjustable temperature range spanning from 42.6 °C to 67.2 °C. Numerical analyses and simulations underscore the considerable superiority of the in-situ etching-growth stabilization strategy over conventional film fabrication techniques, allowing for precise temperature adjustment through the control of etching-growth duration. This adaptability facilitates broad applications, which can range from daily personal thermal regulation to high-temperature medical treatments. Moreover, the patterned and large-scale synthesis makes it a promising pathway from laboratory innovation to practical and industrially feasible solutions. The in-situ metal-ion-integrated photothermal GO films thus hold considerable potential in promoting photothermal conversion technologies for highly adaptable personal thermal management solutions.</div></div>\",\"PeriodicalId\":344,\"journal\":{\"name\":\"Journal of Alloys and Compounds\",\"volume\":\"1022 \",\"pages\":\"Article 179868\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Alloys and Compounds\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925838825014264\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925838825014264","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

开发用于个人热管理的先进光热材料是一个突出的研究热点,专门针对增强热舒适性和优化人体与环境之间的热交换。本研究提出了一种具有原位加入金属离子的光热氧化石墨烯(GO)薄膜的创新设计策略,具有优异的光吸收率(GO - zn -18薄膜高达97.95%),高光热转换效率(在1次太阳照射下达到~67.2°C)和强大的稳定性,温度范围从42.6°C到67.2°C。数值分析和模拟强调了原位蚀刻生长稳定策略相对于传统薄膜制造技术的巨大优势,允许通过控制蚀刻生长持续时间来精确调节温度。这种适应性促进了广泛的应用,可以从日常的个人热调节到高温医疗。此外,从实验室创新到实际和工业可行的解决方案,它的模式和大规模合成使其成为一条有希望的途径。因此,原位金属离子集成光热氧化石墨烯薄膜在促进光热转换技术的高度适应性个人热管理解决方案方面具有相当大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Photothermal GO films with in-situ etching-growth stabilization strategy for adjustable and patterned personal thermal management

Photothermal GO films with in-situ etching-growth stabilization strategy for adjustable and patterned personal thermal management
The development of advanced photothermal materials for personal thermal management is a prominent research focus, specifically aimed at enhancing thermal comfort and optimizing heat exchange between the human body and the environment. This study presents an innovative design strategy for photothermal graphene oxides (GO) films with in-situ incorporated metal ions, showcasing superior light absorption (up to 97.95 % for the GO-Zn-18 film), high photothermal conversion efficiency (reaching ∼67.2 °C under 1 solar illumination), and robust stability, with an adjustable temperature range spanning from 42.6 °C to 67.2 °C. Numerical analyses and simulations underscore the considerable superiority of the in-situ etching-growth stabilization strategy over conventional film fabrication techniques, allowing for precise temperature adjustment through the control of etching-growth duration. This adaptability facilitates broad applications, which can range from daily personal thermal regulation to high-temperature medical treatments. Moreover, the patterned and large-scale synthesis makes it a promising pathway from laboratory innovation to practical and industrially feasible solutions. The in-situ metal-ion-integrated photothermal GO films thus hold considerable potential in promoting photothermal conversion technologies for highly adaptable personal thermal management solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Alloys and Compounds
Journal of Alloys and Compounds 工程技术-材料科学:综合
CiteScore
11.10
自引率
14.50%
发文量
5146
审稿时长
67 days
期刊介绍: The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信