Chang Ju , Li Wang , Yongqiang You , Fang Ma , Shanshan Bai
{"title":"用丛枝菌根真菌增强镉污染盐渍土中超积累菌的抗性:生理和转录机制的研究","authors":"Chang Ju , Li Wang , Yongqiang You , Fang Ma , Shanshan Bai","doi":"10.1016/j.jclepro.2025.145330","DOIUrl":null,"url":null,"abstract":"<div><div>To address the issue of poor phytoremediation in Cd-contaminated saline soil caused by the biotoxicity of Cd-salinity, we constructed a symbiotic system of arbuscular mycorrhizal fungi (AMF) and the hyperaccumulator <em>Solanum nigrum</em>, and systematically elucidated the response strategies of <em>Solanum nigrum</em> and the enhancement mechanism of AMF for plant tolerance through cytological, physiological, and transcriptomic methods. The findings showed that Cd-salinity stress had synergistic aggravated Cd/Na enrichment, ultrastructural damage, photosynthetic inhibition, water loss, and reactive oxygen species (ROS) accumulation in plants. In response to the heterogeneity of Cd/salinity stress, AMF smartly regulated the Cd/salinity tolerance of host plants: AMF decreased intercellular CO<sub>2</sub> concentration (Ci) under Cd stress to alleviate non-stomatal limitation induced by Cd, but increased Ci under salinity stress to alleviate the stomatal limitation induced by salinity; the role of AMF in strengthening the osmoregulation system was more prominent under salinity stress, thereby alleviated the more severe osmotic imbalance induced by salinity. AMF also enhanced signal transduction to consolidate resistance defense, upregulated antioxidant genes to activate antioxidant enzymes, and strengthened the AsA-GSH cycle to mitigate oxidative damage. The enhancement of tolerance improved plant growth and Cd enrichment. Under high Cd-high salinity combined stress, Cd concentrations in shoots and roots increased by 14.28 % and 38.85 %, respectively, and the biomass also increased by over 30.00 % after AMF inoculation. In summary, inoculation with AMF serves as an effective and sustainable phytoremediation enhancement strategy that improves the host plants’ stress resistance through multiple pathways, thereby increasing the phytoremediation potential.</div></div>","PeriodicalId":349,"journal":{"name":"Journal of Cleaner Production","volume":"501 ","pages":"Article 145330"},"PeriodicalIF":10.0000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing the resistance of hyperaccumulator with arbuscular mycorrhizal fungi in cadmium-contaminated saline soil: A physiological and transcriptional mechanistic study\",\"authors\":\"Chang Ju , Li Wang , Yongqiang You , Fang Ma , Shanshan Bai\",\"doi\":\"10.1016/j.jclepro.2025.145330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To address the issue of poor phytoremediation in Cd-contaminated saline soil caused by the biotoxicity of Cd-salinity, we constructed a symbiotic system of arbuscular mycorrhizal fungi (AMF) and the hyperaccumulator <em>Solanum nigrum</em>, and systematically elucidated the response strategies of <em>Solanum nigrum</em> and the enhancement mechanism of AMF for plant tolerance through cytological, physiological, and transcriptomic methods. The findings showed that Cd-salinity stress had synergistic aggravated Cd/Na enrichment, ultrastructural damage, photosynthetic inhibition, water loss, and reactive oxygen species (ROS) accumulation in plants. In response to the heterogeneity of Cd/salinity stress, AMF smartly regulated the Cd/salinity tolerance of host plants: AMF decreased intercellular CO<sub>2</sub> concentration (Ci) under Cd stress to alleviate non-stomatal limitation induced by Cd, but increased Ci under salinity stress to alleviate the stomatal limitation induced by salinity; the role of AMF in strengthening the osmoregulation system was more prominent under salinity stress, thereby alleviated the more severe osmotic imbalance induced by salinity. AMF also enhanced signal transduction to consolidate resistance defense, upregulated antioxidant genes to activate antioxidant enzymes, and strengthened the AsA-GSH cycle to mitigate oxidative damage. The enhancement of tolerance improved plant growth and Cd enrichment. Under high Cd-high salinity combined stress, Cd concentrations in shoots and roots increased by 14.28 % and 38.85 %, respectively, and the biomass also increased by over 30.00 % after AMF inoculation. In summary, inoculation with AMF serves as an effective and sustainable phytoremediation enhancement strategy that improves the host plants’ stress resistance through multiple pathways, thereby increasing the phytoremediation potential.</div></div>\",\"PeriodicalId\":349,\"journal\":{\"name\":\"Journal of Cleaner Production\",\"volume\":\"501 \",\"pages\":\"Article 145330\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cleaner Production\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0959652625006808\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cleaner Production","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959652625006808","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Enhancing the resistance of hyperaccumulator with arbuscular mycorrhizal fungi in cadmium-contaminated saline soil: A physiological and transcriptional mechanistic study
To address the issue of poor phytoremediation in Cd-contaminated saline soil caused by the biotoxicity of Cd-salinity, we constructed a symbiotic system of arbuscular mycorrhizal fungi (AMF) and the hyperaccumulator Solanum nigrum, and systematically elucidated the response strategies of Solanum nigrum and the enhancement mechanism of AMF for plant tolerance through cytological, physiological, and transcriptomic methods. The findings showed that Cd-salinity stress had synergistic aggravated Cd/Na enrichment, ultrastructural damage, photosynthetic inhibition, water loss, and reactive oxygen species (ROS) accumulation in plants. In response to the heterogeneity of Cd/salinity stress, AMF smartly regulated the Cd/salinity tolerance of host plants: AMF decreased intercellular CO2 concentration (Ci) under Cd stress to alleviate non-stomatal limitation induced by Cd, but increased Ci under salinity stress to alleviate the stomatal limitation induced by salinity; the role of AMF in strengthening the osmoregulation system was more prominent under salinity stress, thereby alleviated the more severe osmotic imbalance induced by salinity. AMF also enhanced signal transduction to consolidate resistance defense, upregulated antioxidant genes to activate antioxidant enzymes, and strengthened the AsA-GSH cycle to mitigate oxidative damage. The enhancement of tolerance improved plant growth and Cd enrichment. Under high Cd-high salinity combined stress, Cd concentrations in shoots and roots increased by 14.28 % and 38.85 %, respectively, and the biomass also increased by over 30.00 % after AMF inoculation. In summary, inoculation with AMF serves as an effective and sustainable phytoremediation enhancement strategy that improves the host plants’ stress resistance through multiple pathways, thereby increasing the phytoremediation potential.
期刊介绍:
The Journal of Cleaner Production is an international, transdisciplinary journal that addresses and discusses theoretical and practical Cleaner Production, Environmental, and Sustainability issues. It aims to help societies become more sustainable by focusing on the concept of 'Cleaner Production', which aims at preventing waste production and increasing efficiencies in energy, water, resources, and human capital use. The journal serves as a platform for corporations, governments, education institutions, regions, and societies to engage in discussions and research related to Cleaner Production, environmental, and sustainability practices.