Yunjian Hu, Danni Su, Tiecheng Luo, Yuru Lai, Zhengyi Liao, Chunhong Zeng, Xiaodong Zhang, Man Hoi Wong, Zimin Chen, Yanli Pei, Gang Wang, Xing Lu
{"title":"高温N离子注入增强β-Ga2O3阻流层性能","authors":"Yunjian Hu, Danni Su, Tiecheng Luo, Yuru Lai, Zhengyi Liao, Chunhong Zeng, Xiaodong Zhang, Man Hoi Wong, Zimin Chen, Yanli Pei, Gang Wang, Xing Lu","doi":"10.1063/5.0256968","DOIUrl":null,"url":null,"abstract":"This work reveals the significant advantages of high-temperature nitrogen (N) ion implantation for fabricating current-blocking layers (CBLs) in β-Ga2O3. A comparative investigation on the structural and electrical properties of N-implanted β-Ga2O3 was conducted under different implantation temperatures and post-implantation annealing (PIA) conditions. The results showed that the high-temperature implantation (HTI) at 500 °C, compared to the room-temperature implantation (RTI), introduced fewer structural defects and less lattice distortion to β-Ga2O3. The HTI-formed CBL demonstrated a far superior current-blocking capability than those formed by the RTI with/without a PIA, in terms of a much lower and more stable leakage current and a significantly enhanced breakdown voltage. Additionally, lateral MOSFETs fabricated with the HTI isolation exhibited a three orders of magnitude lower off-state leakage current while maintaining excellent on-state performance, compared to those using the isolation formed by RTI with PIA. These findings indicate that the in situ dynamic annealing effect of HTI effectively reduces implantation-induced damage, enhances impurity activation, and improves the overall performance of the N-implanted CBLs in β-Ga2O3.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"218 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-temperature N ion implantation for performance-enhanced current-blocking layers in β-Ga2O3\",\"authors\":\"Yunjian Hu, Danni Su, Tiecheng Luo, Yuru Lai, Zhengyi Liao, Chunhong Zeng, Xiaodong Zhang, Man Hoi Wong, Zimin Chen, Yanli Pei, Gang Wang, Xing Lu\",\"doi\":\"10.1063/5.0256968\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work reveals the significant advantages of high-temperature nitrogen (N) ion implantation for fabricating current-blocking layers (CBLs) in β-Ga2O3. A comparative investigation on the structural and electrical properties of N-implanted β-Ga2O3 was conducted under different implantation temperatures and post-implantation annealing (PIA) conditions. The results showed that the high-temperature implantation (HTI) at 500 °C, compared to the room-temperature implantation (RTI), introduced fewer structural defects and less lattice distortion to β-Ga2O3. The HTI-formed CBL demonstrated a far superior current-blocking capability than those formed by the RTI with/without a PIA, in terms of a much lower and more stable leakage current and a significantly enhanced breakdown voltage. Additionally, lateral MOSFETs fabricated with the HTI isolation exhibited a three orders of magnitude lower off-state leakage current while maintaining excellent on-state performance, compared to those using the isolation formed by RTI with PIA. These findings indicate that the in situ dynamic annealing effect of HTI effectively reduces implantation-induced damage, enhances impurity activation, and improves the overall performance of the N-implanted CBLs in β-Ga2O3.\",\"PeriodicalId\":8094,\"journal\":{\"name\":\"Applied Physics Letters\",\"volume\":\"218 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Physics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0256968\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0256968","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
High-temperature N ion implantation for performance-enhanced current-blocking layers in β-Ga2O3
This work reveals the significant advantages of high-temperature nitrogen (N) ion implantation for fabricating current-blocking layers (CBLs) in β-Ga2O3. A comparative investigation on the structural and electrical properties of N-implanted β-Ga2O3 was conducted under different implantation temperatures and post-implantation annealing (PIA) conditions. The results showed that the high-temperature implantation (HTI) at 500 °C, compared to the room-temperature implantation (RTI), introduced fewer structural defects and less lattice distortion to β-Ga2O3. The HTI-formed CBL demonstrated a far superior current-blocking capability than those formed by the RTI with/without a PIA, in terms of a much lower and more stable leakage current and a significantly enhanced breakdown voltage. Additionally, lateral MOSFETs fabricated with the HTI isolation exhibited a three orders of magnitude lower off-state leakage current while maintaining excellent on-state performance, compared to those using the isolation formed by RTI with PIA. These findings indicate that the in situ dynamic annealing effect of HTI effectively reduces implantation-induced damage, enhances impurity activation, and improves the overall performance of the N-implanted CBLs in β-Ga2O3.
期刊介绍:
Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology.
In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics.
APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field.
Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.