等位六倍体高级自交代选择后的表型优势和改进的基因组稳定性。

IF 6.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yan Niu, Rui Yang, Zelong Li, Zhengxuan Huo, Shihao Chang, Entang Tian, Han Qin, Wallace A Cowling, Kadambot H M Siddique, Annaliese S Mason, Sheng Chen, Jun Zou
{"title":"等位六倍体高级自交代选择后的表型优势和改进的基因组稳定性。","authors":"Yan Niu, Rui Yang, Zelong Li, Zhengxuan Huo, Shihao Chang, Entang Tian, Han Qin, Wallace A Cowling, Kadambot H M Siddique, Annaliese S Mason, Sheng Chen, Jun Zou","doi":"10.1016/j.jgg.2025.03.004","DOIUrl":null,"url":null,"abstract":"<p><p>Allopolyploids often exhibit advantages in vigor and adaptability compared to diploids. A long-term goal in the economically important Brassica genus has been to develop a new allohexaploid crop type (AABBCC) by combining different diploid and allotetraploid crop species. However, early-generation allohexaploids often face challenges like unstable meiosis and low fertility, and the phenotypic performance of these synthetic lines has rarely been assessed. This study analyzes agronomic traits, fertility, and genome stability in A<sup>r</sup>A<sup>r</sup>B<sup>c</sup>B<sup>c</sup>C<sup>c</sup>C<sup>c</sup> lines derived from four crosses between B. carinata and B. rapa after 9-11 selfing generations. Our results demonstrate polyploid advantage in vigor and seed traits, considerable phenotypic variation, and high fertility and genome stability. Meanwhile, parental genotypes significantly influence outcomes in advanced allohexaploids. Structural variants, largely resulting from A-C homoeologous exchanges, contribute to genomic variation and influence hexaploid genome stability, with the A sub-genome showing the highest variability. Both positive and negative impacts of SVs on fertility and seed weight are observed. Pseudo-euploids, frequently appearing, do not significantly affect fertility or other agronomic traits compared to euploids, indicating a potential pathway toward a stable allohexaploid species. These findings provide insights into the challenge and potential for developing an adaptable and stable Brassica hexaploid through selection.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phenotypic advantages and improved genomic stability following selection in advanced selfing-generations of Brassica allohexaploids.\",\"authors\":\"Yan Niu, Rui Yang, Zelong Li, Zhengxuan Huo, Shihao Chang, Entang Tian, Han Qin, Wallace A Cowling, Kadambot H M Siddique, Annaliese S Mason, Sheng Chen, Jun Zou\",\"doi\":\"10.1016/j.jgg.2025.03.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Allopolyploids often exhibit advantages in vigor and adaptability compared to diploids. A long-term goal in the economically important Brassica genus has been to develop a new allohexaploid crop type (AABBCC) by combining different diploid and allotetraploid crop species. However, early-generation allohexaploids often face challenges like unstable meiosis and low fertility, and the phenotypic performance of these synthetic lines has rarely been assessed. This study analyzes agronomic traits, fertility, and genome stability in A<sup>r</sup>A<sup>r</sup>B<sup>c</sup>B<sup>c</sup>C<sup>c</sup>C<sup>c</sup> lines derived from four crosses between B. carinata and B. rapa after 9-11 selfing generations. Our results demonstrate polyploid advantage in vigor and seed traits, considerable phenotypic variation, and high fertility and genome stability. Meanwhile, parental genotypes significantly influence outcomes in advanced allohexaploids. Structural variants, largely resulting from A-C homoeologous exchanges, contribute to genomic variation and influence hexaploid genome stability, with the A sub-genome showing the highest variability. Both positive and negative impacts of SVs on fertility and seed weight are observed. Pseudo-euploids, frequently appearing, do not significantly affect fertility or other agronomic traits compared to euploids, indicating a potential pathway toward a stable allohexaploid species. These findings provide insights into the challenge and potential for developing an adaptable and stable Brassica hexaploid through selection.</p>\",\"PeriodicalId\":54825,\"journal\":{\"name\":\"Journal of Genetics and Genomics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Genetics and Genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jgg.2025.03.004\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Genetics and Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jgg.2025.03.004","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

与二倍体相比,异源多倍体在活力和适应性方面往往具有优势。在经济上具有重要意义的芸苔属植物中,一个长期的目标是将不同的二倍体和异源四倍体作物组合成一种新的异源六倍体作物类型(AABBCC)。然而,早代异源六倍体经常面临减数分裂不稳定和低育性等挑战,这些合成系的表型表现很少得到评估。本研究分析了9-11自交代后由4个红毛小叶蜂与红毛小叶蜂杂交获得的ArArBcBcCcCc系的农艺性状、育性和基因组稳定性。我们的研究结果表明多倍体在活力和种子性状上具有优势,表型变异大,育性高,基因组稳定性好。同时,亲本基因型显著影响晚期异源六倍体的预后。结构变异主要由A- c同源交换引起,有助于基因组变异并影响六倍体基因组的稳定性,其中A亚基因组表现出最高的变异性。SVs对育性和种子重的影响既有正影响,也有负影响。与整倍体相比,经常出现的伪整倍体对育性或其他农艺性状的影响不显著,这表明了向稳定的同种六倍体物种发展的潜在途径。这些发现为通过选择培育适应性强且稳定的芸苔六倍体的挑战和潜力提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phenotypic advantages and improved genomic stability following selection in advanced selfing-generations of Brassica allohexaploids.

Allopolyploids often exhibit advantages in vigor and adaptability compared to diploids. A long-term goal in the economically important Brassica genus has been to develop a new allohexaploid crop type (AABBCC) by combining different diploid and allotetraploid crop species. However, early-generation allohexaploids often face challenges like unstable meiosis and low fertility, and the phenotypic performance of these synthetic lines has rarely been assessed. This study analyzes agronomic traits, fertility, and genome stability in ArArBcBcCcCc lines derived from four crosses between B. carinata and B. rapa after 9-11 selfing generations. Our results demonstrate polyploid advantage in vigor and seed traits, considerable phenotypic variation, and high fertility and genome stability. Meanwhile, parental genotypes significantly influence outcomes in advanced allohexaploids. Structural variants, largely resulting from A-C homoeologous exchanges, contribute to genomic variation and influence hexaploid genome stability, with the A sub-genome showing the highest variability. Both positive and negative impacts of SVs on fertility and seed weight are observed. Pseudo-euploids, frequently appearing, do not significantly affect fertility or other agronomic traits compared to euploids, indicating a potential pathway toward a stable allohexaploid species. These findings provide insights into the challenge and potential for developing an adaptable and stable Brassica hexaploid through selection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Genetics and Genomics
Journal of Genetics and Genomics 生物-生化与分子生物学
CiteScore
8.20
自引率
3.40%
发文量
4756
审稿时长
14 days
期刊介绍: The Journal of Genetics and Genomics (JGG, formerly known as Acta Genetica Sinica ) is an international journal publishing peer-reviewed articles of novel and significant discoveries in the fields of genetics and genomics. Topics of particular interest include but are not limited to molecular genetics, developmental genetics, cytogenetics, epigenetics, medical genetics, population and evolutionary genetics, genomics and functional genomics as well as bioinformatics and computational biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信