基于相干的图卷积网络评估脊髓损伤患者的脑重组。

International journal of neural systems Pub Date : 2025-05-01 Epub Date: 2025-03-15 DOI:10.1142/S0129065725500212
Jiancai Leng, Jiaqi Zhao, Yongjian Wu, Chengyan Lv, Zhixiao Lun, Yanzi Li, Chao Zhang, Bin Zhang, Yang Zhang, Fangzhou Xu, Changsong Yi, Tzyy-Ping Jung
{"title":"基于相干的图卷积网络评估脊髓损伤患者的脑重组。","authors":"Jiancai Leng, Jiaqi Zhao, Yongjian Wu, Chengyan Lv, Zhixiao Lun, Yanzi Li, Chao Zhang, Bin Zhang, Yang Zhang, Fangzhou Xu, Changsong Yi, Tzyy-Ping Jung","doi":"10.1142/S0129065725500212","DOIUrl":null,"url":null,"abstract":"<p><p>Motor imagery (MI) engages a broad network of brain regions to imagine a specific action. Investigating the mechanism of brain network reorganization during MI after spinal cord injury (SCI) is crucial because it reflects overall brain activity. Using electroencephalogram (EEG) data from SCI patients, we conducted EEG-based coherence analysis to examine different brain network reorganizations across different frequency bands, from resting to MI. Furthermore, we introduced a consistency calculation-based residual graph convolution (C-ResGCN) classification algorithm. The results show that the [Formula: see text]- and [Formula: see text]-band connectivity weakens, and brain activity decreases during the MI task compared to the resting state. In contrast, the [Formula: see text]-band connectivity increases in motor regions while the default mode network activity declines during MI. Our C-ResGCN algorithm showed excellent performance, achieving a maximum classification accuracy of 96.25%, highlighting its reliability and stability. These findings suggest that brain reorganization in SCI patients reallocates relevant brain resources from the resting state to MI, and effective network reorganization correlates with improved MI performance. This study offers new insights into the mechanisms of MI and potential biomarkers for evaluating rehabilitation outcomes in patients with SCI.</p>","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":" ","pages":"2550021"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coherence-Based Graph Convolution Network to Assess Brain Reorganization in Spinal Cord Injury Patients.\",\"authors\":\"Jiancai Leng, Jiaqi Zhao, Yongjian Wu, Chengyan Lv, Zhixiao Lun, Yanzi Li, Chao Zhang, Bin Zhang, Yang Zhang, Fangzhou Xu, Changsong Yi, Tzyy-Ping Jung\",\"doi\":\"10.1142/S0129065725500212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Motor imagery (MI) engages a broad network of brain regions to imagine a specific action. Investigating the mechanism of brain network reorganization during MI after spinal cord injury (SCI) is crucial because it reflects overall brain activity. Using electroencephalogram (EEG) data from SCI patients, we conducted EEG-based coherence analysis to examine different brain network reorganizations across different frequency bands, from resting to MI. Furthermore, we introduced a consistency calculation-based residual graph convolution (C-ResGCN) classification algorithm. The results show that the [Formula: see text]- and [Formula: see text]-band connectivity weakens, and brain activity decreases during the MI task compared to the resting state. In contrast, the [Formula: see text]-band connectivity increases in motor regions while the default mode network activity declines during MI. Our C-ResGCN algorithm showed excellent performance, achieving a maximum classification accuracy of 96.25%, highlighting its reliability and stability. These findings suggest that brain reorganization in SCI patients reallocates relevant brain resources from the resting state to MI, and effective network reorganization correlates with improved MI performance. This study offers new insights into the mechanisms of MI and potential biomarkers for evaluating rehabilitation outcomes in patients with SCI.</p>\",\"PeriodicalId\":94052,\"journal\":{\"name\":\"International journal of neural systems\",\"volume\":\" \",\"pages\":\"2550021\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of neural systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0129065725500212\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of neural systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0129065725500212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/15 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

运动意象(MI)利用广泛的大脑区域网络来想象一个特定的动作。研究脊髓损伤(SCI)后心肌梗死期间脑网络重组的机制至关重要,因为它反映了大脑的整体活动。利用脊髓损伤患者的脑电图(EEG)数据,我们进行了基于脑电图的一致性分析,以检查从静息到心肌梗死不同频段的不同脑网络重组。此外,我们引入了一种基于一致性计算的残差图卷积(C-ResGCN)分类算法。结果表明,与静息状态相比,在MI任务期间,[公式:见文]-和[公式:见文]-波段连通性减弱,大脑活动减少。相比之下,在MI过程中,运动区域的频带连通性增加,而默认模式网络活动下降。我们的C-ResGCN算法表现出优异的性能,最大分类准确率达到96.25%,突出了其可靠性和稳定性。这些发现表明,脊髓损伤患者的大脑重组将相关的大脑资源从静息状态重新分配给心肌梗死,有效的网络重组与心肌梗死表现的改善相关。这项研究为心肌梗死的机制和评估脊髓损伤患者康复结果的潜在生物标志物提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coherence-Based Graph Convolution Network to Assess Brain Reorganization in Spinal Cord Injury Patients.

Motor imagery (MI) engages a broad network of brain regions to imagine a specific action. Investigating the mechanism of brain network reorganization during MI after spinal cord injury (SCI) is crucial because it reflects overall brain activity. Using electroencephalogram (EEG) data from SCI patients, we conducted EEG-based coherence analysis to examine different brain network reorganizations across different frequency bands, from resting to MI. Furthermore, we introduced a consistency calculation-based residual graph convolution (C-ResGCN) classification algorithm. The results show that the [Formula: see text]- and [Formula: see text]-band connectivity weakens, and brain activity decreases during the MI task compared to the resting state. In contrast, the [Formula: see text]-band connectivity increases in motor regions while the default mode network activity declines during MI. Our C-ResGCN algorithm showed excellent performance, achieving a maximum classification accuracy of 96.25%, highlighting its reliability and stability. These findings suggest that brain reorganization in SCI patients reallocates relevant brain resources from the resting state to MI, and effective network reorganization correlates with improved MI performance. This study offers new insights into the mechanisms of MI and potential biomarkers for evaluating rehabilitation outcomes in patients with SCI.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信