{"title":"ascetospore线粒体中的大量RNA编辑。","authors":"Akinori Yabuki, Chihaya Fujii, Euki Yazaki, Akihiro Tame, Keiko Mizuno, Yumiko Obayashi, Yoshitake Takao","doi":"10.1264/jsme2.ME24070","DOIUrl":null,"url":null,"abstract":"<p><p>Ascetosporeans are parasitic protists of invertebrates. A deep sequencing ana-lysis of species within the orders Mikrocytida, Paramyxida, and Haplosporida using metagenomic approaches revealed that their mitochondria were functionally reduced and their organellar genomes were lacking. Ascetosporeans belonging to the order Paradinida have not been sequenced, and the nature of their mitochondria remains unclear. We herein established two cultures of Paradinida and conducted DNA and RNA sequencing ana-lyses. The results obtained indicate that mitochondrial function in paradinids was not reduced and their organellar genomes were retained. In contrast, their mitochondrial genomes were involved in massive A-to-I and C-to-U substitution types of RNA editing. All edits in protein-coding genes were nonsynonymous substitutions, and likely had a restorative function against negative mutations. Furthermore, we detected possible sequences of DYW type of pentatricopeptide repeat (PPR-DYW) protein and a homologue of adenosine deaminase acting on RNA (ADAR-like), which are key enzymes for C-to-U and A-to-I substitutions, respectively. An immunofluorescence ana-lysis showed that ADAR-like of paradinids may specifically localize within mitochondria. These results expand our knowledge of the diversity and complexity of organellar RNA editing phenomena.</p>","PeriodicalId":18482,"journal":{"name":"Microbes and Environments","volume":"40 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11946409/pdf/","citationCount":"0","resultStr":"{\"title\":\"Massive RNA Editing in Ascetosporean Mitochondria.\",\"authors\":\"Akinori Yabuki, Chihaya Fujii, Euki Yazaki, Akihiro Tame, Keiko Mizuno, Yumiko Obayashi, Yoshitake Takao\",\"doi\":\"10.1264/jsme2.ME24070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ascetosporeans are parasitic protists of invertebrates. A deep sequencing ana-lysis of species within the orders Mikrocytida, Paramyxida, and Haplosporida using metagenomic approaches revealed that their mitochondria were functionally reduced and their organellar genomes were lacking. Ascetosporeans belonging to the order Paradinida have not been sequenced, and the nature of their mitochondria remains unclear. We herein established two cultures of Paradinida and conducted DNA and RNA sequencing ana-lyses. The results obtained indicate that mitochondrial function in paradinids was not reduced and their organellar genomes were retained. In contrast, their mitochondrial genomes were involved in massive A-to-I and C-to-U substitution types of RNA editing. All edits in protein-coding genes were nonsynonymous substitutions, and likely had a restorative function against negative mutations. Furthermore, we detected possible sequences of DYW type of pentatricopeptide repeat (PPR-DYW) protein and a homologue of adenosine deaminase acting on RNA (ADAR-like), which are key enzymes for C-to-U and A-to-I substitutions, respectively. An immunofluorescence ana-lysis showed that ADAR-like of paradinids may specifically localize within mitochondria. These results expand our knowledge of the diversity and complexity of organellar RNA editing phenomena.</p>\",\"PeriodicalId\":18482,\"journal\":{\"name\":\"Microbes and Environments\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11946409/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbes and Environments\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1264/jsme2.ME24070\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbes and Environments","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1264/jsme2.ME24070","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Massive RNA Editing in Ascetosporean Mitochondria.
Ascetosporeans are parasitic protists of invertebrates. A deep sequencing ana-lysis of species within the orders Mikrocytida, Paramyxida, and Haplosporida using metagenomic approaches revealed that their mitochondria were functionally reduced and their organellar genomes were lacking. Ascetosporeans belonging to the order Paradinida have not been sequenced, and the nature of their mitochondria remains unclear. We herein established two cultures of Paradinida and conducted DNA and RNA sequencing ana-lyses. The results obtained indicate that mitochondrial function in paradinids was not reduced and their organellar genomes were retained. In contrast, their mitochondrial genomes were involved in massive A-to-I and C-to-U substitution types of RNA editing. All edits in protein-coding genes were nonsynonymous substitutions, and likely had a restorative function against negative mutations. Furthermore, we detected possible sequences of DYW type of pentatricopeptide repeat (PPR-DYW) protein and a homologue of adenosine deaminase acting on RNA (ADAR-like), which are key enzymes for C-to-U and A-to-I substitutions, respectively. An immunofluorescence ana-lysis showed that ADAR-like of paradinids may specifically localize within mitochondria. These results expand our knowledge of the diversity and complexity of organellar RNA editing phenomena.
期刊介绍:
Microbial ecology in natural and engineered environments; Microbial degradation of xenobiotic compounds; Microbial processes in biogeochemical cycles; Microbial interactions and signaling with animals and plants; Interactions among microorganisms; Microorganisms related to public health; Phylogenetic and functional diversity of microbial communities; Genomics, metagenomics, and bioinformatics for microbiology; Application of microorganisms to agriculture, fishery, and industry; Molecular biology and biochemistry related to environmental microbiology; Methodology in general and environmental microbiology; Interdisciplinary research areas for microbial ecology (e.g., Astrobiology, and Origins of Life); Taxonomic description of novel microorganisms with ecological perspective; Physiology and metabolisms of microorganisms; Evolution of genes and microorganisms; Genome report of microorganisms with ecological perspective.