大鼠海马 DG 中的 RAGE/AP-1/OTR 信号通路参与了 CUS 诱导的抑郁样行为。

IF 2.6 3区 心理学 Q2 BEHAVIORAL SCIENCES
Xuemei Li , Xin Wang , Lifen Xue, Lan Luo, Lingxiao Hu, Wengao Jiang
{"title":"大鼠海马 DG 中的 RAGE/AP-1/OTR 信号通路参与了 CUS 诱导的抑郁样行为。","authors":"Xuemei Li ,&nbsp;Xin Wang ,&nbsp;Lifen Xue,&nbsp;Lan Luo,&nbsp;Lingxiao Hu,&nbsp;Wengao Jiang","doi":"10.1016/j.bbr.2025.115540","DOIUrl":null,"url":null,"abstract":"<div><div>There has been a growing body of evidence indicating that the oxytocin (OT) system plays a significant role in the neurophysiology of chronic stress-related mood disorders in recent years. However, the precise alterations for the OT system in response to chronic stress and the underlying mechanism remains unclear. The present study demonstrated that chronic unpredictable stress (CUS) resulted in a reduction in the expression of RAGE and OTR, as well as an inhibition of AP-1 phosphorylation. RAGE knockdown in hippocampus DG induced depressive-like behaviors, down-regulated the OTR protein and mRNA levels, and reduced the AP-1 phosphorylation. The administration of OT via the nasal route reversed the depressive-like behaviors induced by RAGE knockdown, increased the levels of BDNF expression and AP-1 phosphorylation. On the other hand, RAGE over-expression in the hippocampus DG resisted the effects of CUS on depression-like behaviors, AP-1 phosphorylation, and OTR expression. These finding suggested that RAGE signaling pathway is involved in CUS induced depressive-like behaviors at least partially by regulating OTR expression.</div></div>","PeriodicalId":8823,"journal":{"name":"Behavioural Brain Research","volume":"485 ","pages":"Article 115540"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RAGE/AP-1/OTR signaling pathway in rat hippocampus DG involved in CUS induced depressive-like behaviors\",\"authors\":\"Xuemei Li ,&nbsp;Xin Wang ,&nbsp;Lifen Xue,&nbsp;Lan Luo,&nbsp;Lingxiao Hu,&nbsp;Wengao Jiang\",\"doi\":\"10.1016/j.bbr.2025.115540\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>There has been a growing body of evidence indicating that the oxytocin (OT) system plays a significant role in the neurophysiology of chronic stress-related mood disorders in recent years. However, the precise alterations for the OT system in response to chronic stress and the underlying mechanism remains unclear. The present study demonstrated that chronic unpredictable stress (CUS) resulted in a reduction in the expression of RAGE and OTR, as well as an inhibition of AP-1 phosphorylation. RAGE knockdown in hippocampus DG induced depressive-like behaviors, down-regulated the OTR protein and mRNA levels, and reduced the AP-1 phosphorylation. The administration of OT via the nasal route reversed the depressive-like behaviors induced by RAGE knockdown, increased the levels of BDNF expression and AP-1 phosphorylation. On the other hand, RAGE over-expression in the hippocampus DG resisted the effects of CUS on depression-like behaviors, AP-1 phosphorylation, and OTR expression. These finding suggested that RAGE signaling pathway is involved in CUS induced depressive-like behaviors at least partially by regulating OTR expression.</div></div>\",\"PeriodicalId\":8823,\"journal\":{\"name\":\"Behavioural Brain Research\",\"volume\":\"485 \",\"pages\":\"Article 115540\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Behavioural Brain Research\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166432825001263\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioural Brain Research","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166432825001263","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
RAGE/AP-1/OTR signaling pathway in rat hippocampus DG involved in CUS induced depressive-like behaviors
There has been a growing body of evidence indicating that the oxytocin (OT) system plays a significant role in the neurophysiology of chronic stress-related mood disorders in recent years. However, the precise alterations for the OT system in response to chronic stress and the underlying mechanism remains unclear. The present study demonstrated that chronic unpredictable stress (CUS) resulted in a reduction in the expression of RAGE and OTR, as well as an inhibition of AP-1 phosphorylation. RAGE knockdown in hippocampus DG induced depressive-like behaviors, down-regulated the OTR protein and mRNA levels, and reduced the AP-1 phosphorylation. The administration of OT via the nasal route reversed the depressive-like behaviors induced by RAGE knockdown, increased the levels of BDNF expression and AP-1 phosphorylation. On the other hand, RAGE over-expression in the hippocampus DG resisted the effects of CUS on depression-like behaviors, AP-1 phosphorylation, and OTR expression. These finding suggested that RAGE signaling pathway is involved in CUS induced depressive-like behaviors at least partially by regulating OTR expression.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Behavioural Brain Research
Behavioural Brain Research 医学-行为科学
CiteScore
5.60
自引率
0.00%
发文量
383
审稿时长
61 days
期刊介绍: Behavioural Brain Research is an international, interdisciplinary journal dedicated to the publication of articles in the field of behavioural neuroscience, broadly defined. Contributions from the entire range of disciplines that comprise the neurosciences, behavioural sciences or cognitive sciences are appropriate, as long as the goal is to delineate the neural mechanisms underlying behaviour. Thus, studies may range from neurophysiological, neuroanatomical, neurochemical or neuropharmacological analysis of brain-behaviour relations, including the use of molecular genetic or behavioural genetic approaches, to studies that involve the use of brain imaging techniques, to neuroethological studies. Reports of original research, of major methodological advances, or of novel conceptual approaches are all encouraged. The journal will also consider critical reviews on selected topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信