激光诱导石墨烯用于疾病早期检测的研究进展

IF 3.5 4区 化学 Q2 ELECTROCHEMISTRY
Sri Ramulu Torati, Gymama Slaughter
{"title":"激光诱导石墨烯用于疾病早期检测的研究进展","authors":"Sri Ramulu Torati,&nbsp;Gymama Slaughter","doi":"10.1002/celc.202400672","DOIUrl":null,"url":null,"abstract":"<p>Electrochemical biosensors have been instrumental in early disease detection, facilitating effective monitoring and treatment. The emergence of graphene has significantly advanced sensor technology in various fields, including biomedicine, electronics, and energy. In this landscape, laser-induced graphene (LIG) has emerged as a superior alternative to conventional graphene synthesis methods. Its straightforward fabrication process and compatibility with wearable devices boost its practicality and potential for real-world applications. This review highlights the transformative potential of LIG in biosensing, showcasing its contributions to the development of next-generation diagnostic tools for early disease detection. An overview of the LIG synthesis process and its applications in detecting a wide array of biomarkers, from small molecules to large macromolecules, is provided. The integration of LIG biosensors into wearable devices are explored, highlighting their flexibility and potential for continuous, non-invasive monitoring of biomarkers. Additionally, this review addresses the current challenges in this field and discusses the future directions for the advancement of LIG-based biosensors in biomedical applications.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"12 6","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400672","citationCount":"0","resultStr":"{\"title\":\"Laser-Induced Graphene for Early Disease Detection: A Review\",\"authors\":\"Sri Ramulu Torati,&nbsp;Gymama Slaughter\",\"doi\":\"10.1002/celc.202400672\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Electrochemical biosensors have been instrumental in early disease detection, facilitating effective monitoring and treatment. The emergence of graphene has significantly advanced sensor technology in various fields, including biomedicine, electronics, and energy. In this landscape, laser-induced graphene (LIG) has emerged as a superior alternative to conventional graphene synthesis methods. Its straightforward fabrication process and compatibility with wearable devices boost its practicality and potential for real-world applications. This review highlights the transformative potential of LIG in biosensing, showcasing its contributions to the development of next-generation diagnostic tools for early disease detection. An overview of the LIG synthesis process and its applications in detecting a wide array of biomarkers, from small molecules to large macromolecules, is provided. The integration of LIG biosensors into wearable devices are explored, highlighting their flexibility and potential for continuous, non-invasive monitoring of biomarkers. Additionally, this review addresses the current challenges in this field and discusses the future directions for the advancement of LIG-based biosensors in biomedical applications.</p>\",\"PeriodicalId\":142,\"journal\":{\"name\":\"ChemElectroChem\",\"volume\":\"12 6\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400672\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemElectroChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/celc.202400672\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemElectroChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/celc.202400672","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

电化学生物传感器在疾病早期检测、促进有效监测和治疗方面发挥了重要作用。石墨烯的出现极大地推动了包括生物医学、电子和能源在内的各个领域的传感器技术。在这一领域,激光诱导石墨烯(LIG)已成为传统石墨烯合成方法的优越替代品。其简单的制造工艺和与可穿戴设备的兼容性提高了其实用性和现实世界应用的潜力。这篇综述强调了LIG在生物传感领域的变革潜力,展示了它对开发用于早期疾病检测的下一代诊断工具的贡献。概述了LIG合成过程及其在检测从小分子到大分子的各种生物标志物方面的应用。将LIG生物传感器集成到可穿戴设备中进行了探索,突出了其灵活性和对生物标志物进行连续、无创监测的潜力。此外,本文综述了当前该领域面临的挑战,并讨论了基于ligo的生物传感器在生物医学应用中的未来发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Laser-Induced Graphene for Early Disease Detection: A Review

Laser-Induced Graphene for Early Disease Detection: A Review

Electrochemical biosensors have been instrumental in early disease detection, facilitating effective monitoring and treatment. The emergence of graphene has significantly advanced sensor technology in various fields, including biomedicine, electronics, and energy. In this landscape, laser-induced graphene (LIG) has emerged as a superior alternative to conventional graphene synthesis methods. Its straightforward fabrication process and compatibility with wearable devices boost its practicality and potential for real-world applications. This review highlights the transformative potential of LIG in biosensing, showcasing its contributions to the development of next-generation diagnostic tools for early disease detection. An overview of the LIG synthesis process and its applications in detecting a wide array of biomarkers, from small molecules to large macromolecules, is provided. The integration of LIG biosensors into wearable devices are explored, highlighting their flexibility and potential for continuous, non-invasive monitoring of biomarkers. Additionally, this review addresses the current challenges in this field and discusses the future directions for the advancement of LIG-based biosensors in biomedical applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemElectroChem
ChemElectroChem ELECTROCHEMISTRY-
CiteScore
7.90
自引率
2.50%
发文量
515
审稿时长
1.2 months
期刊介绍: ChemElectroChem is aimed to become a top-ranking electrochemistry journal for primary research papers and critical secondary information from authors across the world. The journal covers the entire scope of pure and applied electrochemistry, the latter encompassing (among others) energy applications, electrochemistry at interfaces (including surfaces), photoelectrochemistry and bioelectrochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信