认知无线电网络中针对 PUE 攻击的 ISAC 辅助防御机制

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Junxian Li, Baogang Li, Guanfei You, Jingxi Zhang, Wei Zhao
{"title":"认知无线电网络中针对 PUE 攻击的 ISAC 辅助防御机制","authors":"Junxian Li,&nbsp;Baogang Li,&nbsp;Guanfei You,&nbsp;Jingxi Zhang,&nbsp;Wei Zhao","doi":"10.1155/int/6618969","DOIUrl":null,"url":null,"abstract":"<div>\n <p>With the evolution of communication systems toward the sixth-generation technology (6G), intelligent cognitive communication has gained considerable attention. As an important part of intelligent cognitive communication, cognitive radio (CR) offers promising prospects for efficient spectrum utilization. However, with the introduction of cognitive capabilities, CR networks (CRNs) face not only common security threats in wireless systems, but also unique security threats, including primary user emulation (PUE) attacks, endangering communication reliability and confidentiality. In order to enhance the defense ability of CRNs against PUE attacks, this paper proposes an integrated sensing and communication (ISAC)-assisted approach. Leveraging ISAC technology, our scheme enhances location detection precision. We introduce a high-resolution perception signal parameter estimation method and a position-based identity authentication scheme. Furthermore, deep reinforcement learning is used to dynamically optimize the authentication threshold to ensure the stability of authentication in dynamic scenarios. Simulation results show that the proposed scheme is effective in resisting PUE attacks and improves the security and reliability of CRNs.</p>\n </div>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"2025 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/int/6618969","citationCount":"0","resultStr":"{\"title\":\"ISAC-Assisted Defense Mechanisms for PUE Attacks in Cognitive Radio Networks\",\"authors\":\"Junxian Li,&nbsp;Baogang Li,&nbsp;Guanfei You,&nbsp;Jingxi Zhang,&nbsp;Wei Zhao\",\"doi\":\"10.1155/int/6618969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>With the evolution of communication systems toward the sixth-generation technology (6G), intelligent cognitive communication has gained considerable attention. As an important part of intelligent cognitive communication, cognitive radio (CR) offers promising prospects for efficient spectrum utilization. However, with the introduction of cognitive capabilities, CR networks (CRNs) face not only common security threats in wireless systems, but also unique security threats, including primary user emulation (PUE) attacks, endangering communication reliability and confidentiality. In order to enhance the defense ability of CRNs against PUE attacks, this paper proposes an integrated sensing and communication (ISAC)-assisted approach. Leveraging ISAC technology, our scheme enhances location detection precision. We introduce a high-resolution perception signal parameter estimation method and a position-based identity authentication scheme. Furthermore, deep reinforcement learning is used to dynamically optimize the authentication threshold to ensure the stability of authentication in dynamic scenarios. Simulation results show that the proposed scheme is effective in resisting PUE attacks and improves the security and reliability of CRNs.</p>\\n </div>\",\"PeriodicalId\":14089,\"journal\":{\"name\":\"International Journal of Intelligent Systems\",\"volume\":\"2025 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/int/6618969\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Intelligent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/int/6618969\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/int/6618969","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

随着通信系统向第六代技术(6G)的发展,智能认知通信受到越来越多的关注。认知无线电作为智能认知通信的重要组成部分,在频谱高效利用方面有着广阔的发展前景。然而,随着认知能力的引入,CR网络不仅面临着无线系统中常见的安全威胁,而且还面临着独特的安全威胁,包括主用户仿真(PUE)攻击,危及通信的可靠性和保密性。为了提高crn对PUE攻击的防御能力,本文提出了一种集成感知与通信(ISAC)辅助方法。利用ISAC技术,提高了定位检测精度。介绍了一种高分辨率感知信号参数估计方法和基于位置的身份认证方案。利用深度强化学习对认证阈值进行动态优化,保证动态场景下认证的稳定性。仿真结果表明,该方案能够有效抵御PUE攻击,提高了crn的安全性和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

ISAC-Assisted Defense Mechanisms for PUE Attacks in Cognitive Radio Networks

ISAC-Assisted Defense Mechanisms for PUE Attacks in Cognitive Radio Networks

With the evolution of communication systems toward the sixth-generation technology (6G), intelligent cognitive communication has gained considerable attention. As an important part of intelligent cognitive communication, cognitive radio (CR) offers promising prospects for efficient spectrum utilization. However, with the introduction of cognitive capabilities, CR networks (CRNs) face not only common security threats in wireless systems, but also unique security threats, including primary user emulation (PUE) attacks, endangering communication reliability and confidentiality. In order to enhance the defense ability of CRNs against PUE attacks, this paper proposes an integrated sensing and communication (ISAC)-assisted approach. Leveraging ISAC technology, our scheme enhances location detection precision. We introduce a high-resolution perception signal parameter estimation method and a position-based identity authentication scheme. Furthermore, deep reinforcement learning is used to dynamically optimize the authentication threshold to ensure the stability of authentication in dynamic scenarios. Simulation results show that the proposed scheme is effective in resisting PUE attacks and improves the security and reliability of CRNs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Intelligent Systems
International Journal of Intelligent Systems 工程技术-计算机:人工智能
CiteScore
11.30
自引率
14.30%
发文量
304
审稿时长
9 months
期刊介绍: The International Journal of Intelligent Systems serves as a forum for individuals interested in tapping into the vast theories based on intelligent systems construction. With its peer-reviewed format, the journal explores several fascinating editorials written by today''s experts in the field. Because new developments are being introduced each day, there''s much to be learned — examination, analysis creation, information retrieval, man–computer interactions, and more. The International Journal of Intelligent Systems uses charts and illustrations to demonstrate these ground-breaking issues, and encourages readers to share their thoughts and experiences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信