Juliana Teixeira, Lara Souza, Aline Bombo, Soizig Le Stradic
{"title":"火阻如何影响热带开放生态系统的地下生物量?","authors":"Juliana Teixeira, Lara Souza, Aline Bombo, Soizig Le Stradic","doi":"10.1111/jvs.70027","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Aim</h3>\n \n <p>Belowground biomass, including roots and belowground bud-bearing organs, is crucial in tropical open ecosystems, particularly during post-fire regeneration. However, we still do not understand how variation in fire regime modulates the allocation of biomass in these belowground parts. In two distinct fire regimes, we investigated aboveground and belowground biomass, as well as the distribution of biomass and the composition of bud-bearing belowground organs in open tropical ecosystems.</p>\n </section>\n \n <section>\n \n <h3> Location</h3>\n \n <p>Five tropical open ecosystems in Brazil (from northern to southeast Brazil).</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We assessed above- and belowground plant biomass across 100 plots (10 plots for each of the two treatment conditions i.e. frequently burnt and fire excluded, and at five sites in total). We sorted out biomass as live aboveground, belowground bud-bearing organs, coarse (> 2 mm) and fine roots (< 2 mm). Bud-bearing belowground organs were classified into morphological categories (e.g., xylopodia, woody rhizome and fleshy rhizome).</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Fire-excluded areas had a lower root-to-shoot ratio and lower total belowground-to-aboveground biomass allocation than areas frequently burnt. The total belowground biomass, as well as fine and coarse root biomass and belowground bud-bearing organ biomass, remained unchanged with fire exclusion. The composition of belowground bud-bearing organs changed towards organs with lateral spread, such as woody and fleshy rhizomes, when fire was excluded.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>More than 10 years of fire exclusion did not affect the total belowground biomass but changed the composition of bud-bearing belowground organs in tropical open ecosystems. Even after 12 years of fire exclusion, bud-bearing belowground organs were still present in the community, ensuring resilience to fire even if they were not burned regularly.</p>\n </section>\n </div>","PeriodicalId":49965,"journal":{"name":"Journal of Vegetation Science","volume":"36 2","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How Does Fire Exclusion Affect the Belowground Biomass of Tropical Open Ecosystems?\",\"authors\":\"Juliana Teixeira, Lara Souza, Aline Bombo, Soizig Le Stradic\",\"doi\":\"10.1111/jvs.70027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Aim</h3>\\n \\n <p>Belowground biomass, including roots and belowground bud-bearing organs, is crucial in tropical open ecosystems, particularly during post-fire regeneration. However, we still do not understand how variation in fire regime modulates the allocation of biomass in these belowground parts. In two distinct fire regimes, we investigated aboveground and belowground biomass, as well as the distribution of biomass and the composition of bud-bearing belowground organs in open tropical ecosystems.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Location</h3>\\n \\n <p>Five tropical open ecosystems in Brazil (from northern to southeast Brazil).</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>We assessed above- and belowground plant biomass across 100 plots (10 plots for each of the two treatment conditions i.e. frequently burnt and fire excluded, and at five sites in total). We sorted out biomass as live aboveground, belowground bud-bearing organs, coarse (> 2 mm) and fine roots (< 2 mm). Bud-bearing belowground organs were classified into morphological categories (e.g., xylopodia, woody rhizome and fleshy rhizome).</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>Fire-excluded areas had a lower root-to-shoot ratio and lower total belowground-to-aboveground biomass allocation than areas frequently burnt. The total belowground biomass, as well as fine and coarse root biomass and belowground bud-bearing organ biomass, remained unchanged with fire exclusion. The composition of belowground bud-bearing organs changed towards organs with lateral spread, such as woody and fleshy rhizomes, when fire was excluded.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusions</h3>\\n \\n <p>More than 10 years of fire exclusion did not affect the total belowground biomass but changed the composition of bud-bearing belowground organs in tropical open ecosystems. Even after 12 years of fire exclusion, bud-bearing belowground organs were still present in the community, ensuring resilience to fire even if they were not burned regularly.</p>\\n </section>\\n </div>\",\"PeriodicalId\":49965,\"journal\":{\"name\":\"Journal of Vegetation Science\",\"volume\":\"36 2\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vegetation Science\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jvs.70027\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vegetation Science","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jvs.70027","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
How Does Fire Exclusion Affect the Belowground Biomass of Tropical Open Ecosystems?
Aim
Belowground biomass, including roots and belowground bud-bearing organs, is crucial in tropical open ecosystems, particularly during post-fire regeneration. However, we still do not understand how variation in fire regime modulates the allocation of biomass in these belowground parts. In two distinct fire regimes, we investigated aboveground and belowground biomass, as well as the distribution of biomass and the composition of bud-bearing belowground organs in open tropical ecosystems.
Location
Five tropical open ecosystems in Brazil (from northern to southeast Brazil).
Methods
We assessed above- and belowground plant biomass across 100 plots (10 plots for each of the two treatment conditions i.e. frequently burnt and fire excluded, and at five sites in total). We sorted out biomass as live aboveground, belowground bud-bearing organs, coarse (> 2 mm) and fine roots (< 2 mm). Bud-bearing belowground organs were classified into morphological categories (e.g., xylopodia, woody rhizome and fleshy rhizome).
Results
Fire-excluded areas had a lower root-to-shoot ratio and lower total belowground-to-aboveground biomass allocation than areas frequently burnt. The total belowground biomass, as well as fine and coarse root biomass and belowground bud-bearing organ biomass, remained unchanged with fire exclusion. The composition of belowground bud-bearing organs changed towards organs with lateral spread, such as woody and fleshy rhizomes, when fire was excluded.
Conclusions
More than 10 years of fire exclusion did not affect the total belowground biomass but changed the composition of bud-bearing belowground organs in tropical open ecosystems. Even after 12 years of fire exclusion, bud-bearing belowground organs were still present in the community, ensuring resilience to fire even if they were not burned regularly.
期刊介绍:
The Journal of Vegetation Science publishes papers on all aspects of plant community ecology, with particular emphasis on papers that develop new concepts or methods, test theory, identify general patterns, or that are otherwise likely to interest a broad international readership. Papers may focus on any aspect of vegetation science, e.g. community structure (including community assembly and plant functional types), biodiversity (including species richness and composition), spatial patterns (including plant geography and landscape ecology), temporal changes (including demography, community dynamics and palaeoecology) and processes (including ecophysiology), provided the focus is on increasing our understanding of plant communities. The Journal publishes papers on the ecology of a single species only if it plays a key role in structuring plant communities. Papers that apply ecological concepts, theories and methods to the vegetation management, conservation and restoration, and papers on vegetation survey should be directed to our associate journal, Applied Vegetation Science journal.