能源市场的计量值过程

IF 1.6 3区 经济学 Q3 BUSINESS, FINANCE
Christa Cuchiero, Luca Di Persio, Francesco Guida, Sara Svaluto-Ferro
{"title":"能源市场的计量值过程","authors":"Christa Cuchiero,&nbsp;Luca Di Persio,&nbsp;Francesco Guida,&nbsp;Sara Svaluto-Ferro","doi":"10.1111/mafi.12452","DOIUrl":null,"url":null,"abstract":"<p>We introduce a framework that allows to employ (non-negative) measure-valued processes for energy market modeling, in particular for electricity and gas futures. Interpreting the process' spatial structure as time to maturity, we show how the Heath–Jarrow–Morton approach can be translated to this framework, thus guaranteeing arbitrage free modeling in infinite dimensions, while allowing for the incorporation of important stylized facts, in particular stochastic discontinuities, that is, jumps or spikes at pre-specified (deterministic) dates. We derive an analog to the HJM-drift condition and then treat in a Markovian setting existence of non-negative measure-valued diffusions that satisfy this condition. To analyze mathematically convenient classes we consider measure-valued polynomial and affine diffusions, where we can precisely specify the diffusion part in terms of continuous functions satisfying certain admissibility conditions. For calibration purposes these functions can then be parameterized by neural networks yielding measure-valued analogs of neural SPDEs. By combining Fourier approaches or the moment formula with stochastic gradient descent methods, this then allows for tractable calibration procedures which we also test by way of example on market data.</p>","PeriodicalId":49867,"journal":{"name":"Mathematical Finance","volume":"35 2","pages":"520-566"},"PeriodicalIF":1.6000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mafi.12452","citationCount":"0","resultStr":"{\"title\":\"Measure-valued processes for energy markets\",\"authors\":\"Christa Cuchiero,&nbsp;Luca Di Persio,&nbsp;Francesco Guida,&nbsp;Sara Svaluto-Ferro\",\"doi\":\"10.1111/mafi.12452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We introduce a framework that allows to employ (non-negative) measure-valued processes for energy market modeling, in particular for electricity and gas futures. Interpreting the process' spatial structure as time to maturity, we show how the Heath–Jarrow–Morton approach can be translated to this framework, thus guaranteeing arbitrage free modeling in infinite dimensions, while allowing for the incorporation of important stylized facts, in particular stochastic discontinuities, that is, jumps or spikes at pre-specified (deterministic) dates. We derive an analog to the HJM-drift condition and then treat in a Markovian setting existence of non-negative measure-valued diffusions that satisfy this condition. To analyze mathematically convenient classes we consider measure-valued polynomial and affine diffusions, where we can precisely specify the diffusion part in terms of continuous functions satisfying certain admissibility conditions. For calibration purposes these functions can then be parameterized by neural networks yielding measure-valued analogs of neural SPDEs. By combining Fourier approaches or the moment formula with stochastic gradient descent methods, this then allows for tractable calibration procedures which we also test by way of example on market data.</p>\",\"PeriodicalId\":49867,\"journal\":{\"name\":\"Mathematical Finance\",\"volume\":\"35 2\",\"pages\":\"520-566\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mafi.12452\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Finance\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/mafi.12452\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Finance","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/mafi.12452","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了一个框架,允许在能源市场建模中使用(非负的)测量值过程,特别是在电力和天然气期货中。将过程的空间结构解释为成熟的时间,我们展示了Heath-Jarrow-Morton方法如何可以转化为这个框架,从而保证无限维度的无套利建模,同时允许合并重要的风格化事实,特别是随机不连续,即在预先指定的(确定性)日期的跳跃或峰值。我们推导了hhm漂移条件的一个类比,然后在马尔可夫条件下处理了满足该条件的非负测度值扩散的存在性。为了分析数学上方便的类,我们考虑测度值多项式和仿射扩散,其中我们可以用满足一定容许条件的连续函数精确地指定扩散部分。为了校准目的,这些函数可以通过神经网络参数化,产生神经spde的测量值类似物。通过将傅里叶方法或矩公式与随机梯度下降方法相结合,这就允许易于处理的校准程序,我们也通过市场数据的例子进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Measure-valued processes for energy markets

Measure-valued processes for energy markets

We introduce a framework that allows to employ (non-negative) measure-valued processes for energy market modeling, in particular for electricity and gas futures. Interpreting the process' spatial structure as time to maturity, we show how the Heath–Jarrow–Morton approach can be translated to this framework, thus guaranteeing arbitrage free modeling in infinite dimensions, while allowing for the incorporation of important stylized facts, in particular stochastic discontinuities, that is, jumps or spikes at pre-specified (deterministic) dates. We derive an analog to the HJM-drift condition and then treat in a Markovian setting existence of non-negative measure-valued diffusions that satisfy this condition. To analyze mathematically convenient classes we consider measure-valued polynomial and affine diffusions, where we can precisely specify the diffusion part in terms of continuous functions satisfying certain admissibility conditions. For calibration purposes these functions can then be parameterized by neural networks yielding measure-valued analogs of neural SPDEs. By combining Fourier approaches or the moment formula with stochastic gradient descent methods, this then allows for tractable calibration procedures which we also test by way of example on market data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Finance
Mathematical Finance 数学-数学跨学科应用
CiteScore
4.10
自引率
6.20%
发文量
27
审稿时长
>12 weeks
期刊介绍: Mathematical Finance seeks to publish original research articles focused on the development and application of novel mathematical and statistical methods for the analysis of financial problems. The journal welcomes contributions on new statistical methods for the analysis of financial problems. Empirical results will be appropriate to the extent that they illustrate a statistical technique, validate a model or provide insight into a financial problem. Papers whose main contribution rests on empirical results derived with standard approaches will not be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信