{"title":"用马克填料增强聚乳酸基生物复合材料长丝的机械性能,用于 3D 打印应用","authors":"Ganesh Nataraj, S. Ramesh Babu","doi":"10.1002/vnl.22182","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <p>Green composites for 3D printing have gained significant attention due to the potential of incorporating natural fillers to reduce costs and enhance performance while maintaining environmental benefits. The use of agricultural by-products, such as horse gram (Hg), not only promotes waste utilization but also seeks to improve the mechanical properties of biopolymers like PLA. In this study, Hg powder was utilized as a natural filler to enhance the mechanical properties of PLA-based composites. The composites were fabricated with 1%, 2%, 3%, and 4% Hg powder filler content, and the filament was processed through a single screw extruder machine. Their mechanical properties were systematically evaluated to determine the optimal filler ratio. The results indicate that the incorporation of 1% Hg filler into PLA provided superior mechanical performance compared to Neat PLA. Specifically, tensile strength increased by 11.19%, flexural strength improved by 5.32%, and compression strength increased by 5.94%. In contrast, composites with 2% and 3% Hg filler showed a reduction in these mechanical properties, highlighting that the 1% Hg/PLA composite achieves the best balance between strength and filler content. The findings suggest that the 1% Hg/PLA composite offers an optimized combination of tensile, flexural, and compression properties, making it a strong candidate for environmentally sustainable engineering applications such as lightweight structural components, automotive interior parts, and consumer product casings.</p>\n </section>\n \n <section>\n \n <h3> Highlights</h3>\n \n <div>\n <ul>\n \n <li>One percent Hg filler improved tensile, flexural strength, and hardness through uniform dispersion.</li>\n \n <li>Higher filler content (3%–4%) led to agglomeration, reducing composite performance.</li>\n \n <li>XRD and SEM analyses revealed reduced PLA crystallinity and structural defects at higher filler levels.</li>\n </ul>\n </div>\n </section>\n </div>","PeriodicalId":17662,"journal":{"name":"Journal of Vinyl & Additive Technology","volume":"31 2","pages":"453-468"},"PeriodicalIF":3.8000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing mechanical properties of PLA-based bio composite filament reinforced with horse gram filler for 3D printing applications\",\"authors\":\"Ganesh Nataraj, S. Ramesh Babu\",\"doi\":\"10.1002/vnl.22182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <p>Green composites for 3D printing have gained significant attention due to the potential of incorporating natural fillers to reduce costs and enhance performance while maintaining environmental benefits. The use of agricultural by-products, such as horse gram (Hg), not only promotes waste utilization but also seeks to improve the mechanical properties of biopolymers like PLA. In this study, Hg powder was utilized as a natural filler to enhance the mechanical properties of PLA-based composites. The composites were fabricated with 1%, 2%, 3%, and 4% Hg powder filler content, and the filament was processed through a single screw extruder machine. Their mechanical properties were systematically evaluated to determine the optimal filler ratio. The results indicate that the incorporation of 1% Hg filler into PLA provided superior mechanical performance compared to Neat PLA. Specifically, tensile strength increased by 11.19%, flexural strength improved by 5.32%, and compression strength increased by 5.94%. In contrast, composites with 2% and 3% Hg filler showed a reduction in these mechanical properties, highlighting that the 1% Hg/PLA composite achieves the best balance between strength and filler content. The findings suggest that the 1% Hg/PLA composite offers an optimized combination of tensile, flexural, and compression properties, making it a strong candidate for environmentally sustainable engineering applications such as lightweight structural components, automotive interior parts, and consumer product casings.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Highlights</h3>\\n \\n <div>\\n <ul>\\n \\n <li>One percent Hg filler improved tensile, flexural strength, and hardness through uniform dispersion.</li>\\n \\n <li>Higher filler content (3%–4%) led to agglomeration, reducing composite performance.</li>\\n \\n <li>XRD and SEM analyses revealed reduced PLA crystallinity and structural defects at higher filler levels.</li>\\n </ul>\\n </div>\\n </section>\\n </div>\",\"PeriodicalId\":17662,\"journal\":{\"name\":\"Journal of Vinyl & Additive Technology\",\"volume\":\"31 2\",\"pages\":\"453-468\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vinyl & Additive Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/vnl.22182\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vinyl & Additive Technology","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/vnl.22182","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Enhancing mechanical properties of PLA-based bio composite filament reinforced with horse gram filler for 3D printing applications
Green composites for 3D printing have gained significant attention due to the potential of incorporating natural fillers to reduce costs and enhance performance while maintaining environmental benefits. The use of agricultural by-products, such as horse gram (Hg), not only promotes waste utilization but also seeks to improve the mechanical properties of biopolymers like PLA. In this study, Hg powder was utilized as a natural filler to enhance the mechanical properties of PLA-based composites. The composites were fabricated with 1%, 2%, 3%, and 4% Hg powder filler content, and the filament was processed through a single screw extruder machine. Their mechanical properties were systematically evaluated to determine the optimal filler ratio. The results indicate that the incorporation of 1% Hg filler into PLA provided superior mechanical performance compared to Neat PLA. Specifically, tensile strength increased by 11.19%, flexural strength improved by 5.32%, and compression strength increased by 5.94%. In contrast, composites with 2% and 3% Hg filler showed a reduction in these mechanical properties, highlighting that the 1% Hg/PLA composite achieves the best balance between strength and filler content. The findings suggest that the 1% Hg/PLA composite offers an optimized combination of tensile, flexural, and compression properties, making it a strong candidate for environmentally sustainable engineering applications such as lightweight structural components, automotive interior parts, and consumer product casings.
Highlights
One percent Hg filler improved tensile, flexural strength, and hardness through uniform dispersion.
Higher filler content (3%–4%) led to agglomeration, reducing composite performance.
XRD and SEM analyses revealed reduced PLA crystallinity and structural defects at higher filler levels.
期刊介绍:
Journal of Vinyl and Additive Technology is a peer-reviewed technical publication for new work in the fields of polymer modifiers and additives, vinyl polymers and selected review papers. Over half of all papers in JVAT are based on technology of additives and modifiers for all classes of polymers: thermoset polymers and both condensation and addition thermoplastics. Papers on vinyl technology include PVC additives.