用旅行时间法模拟澳大利亚鸭河流域的总磷和硝酸盐

IF 3.2 3区 地球科学 Q1 Environmental Science
Zahra Riazi, Andrew William Western
{"title":"用旅行时间法模拟澳大利亚鸭河流域的总磷和硝酸盐","authors":"Zahra Riazi,&nbsp;Andrew William Western","doi":"10.1002/hyp.70104","DOIUrl":null,"url":null,"abstract":"<p>Total phosphorus (TP) and nitrate are important non-conservative contaminants of streams. They vary strongly in response to climatic, hydrologic, and other drivers and are affected by different flow paths. Water residence and travel time distributions carrying information about sources of streamflow can potentially provide a basis for modelling nitrate and TP dynamics. In this study, we use a travel time model coupled with age—concentration relationships to simulate nitrate and TP concentrations in the Duck River catchment, NW Tasmania, Australia. A modified version of the Tran-SAS model was used with time-varying beta storage selection functions, calibrated against high-frequency electrical conductivity (EC) observations. Concentrations of TP and nitrate were then modelled using the water TTDs coupled with age-concentration relationships for TP and nitrate. This approach separated biogeochemical effects from water travel time and ensured consistent TTDs underpinning the transport of different nutrients. Two years (2008 and 2009 water years) of high-frequency nutrient concentrations were used for model calibration and validation. It was initially hypothesised that the age-concentration relationships for nitrate and TP could be temporally fixed, with the seasonal variation in residence time distribution capturing any seasonality in nutrient behaviour. The models performed moderately under this hypothesis; however, residual analysis clearly demonstrated seasonal declines in the concentrations of TP and nitrate during events across the high flow season. Simulations of TP and nitrate were markedly improved by using different source concentrations: one for the early high flow season and the other for the remainder of the year. Both Nash-Sutcliffe Efficiency and the combined seasonal and event dynamics of nitrate and TP were markedly improved by using different source concentrations for these two different periods. This suggests that land management and biogeochemical processing are important influences on the temporal dynamics of nutrients in streams. The study informs future developments of TTD-based water quality modelling and demonstrates the need to include temporally dynamic nutrient source concentrations for young water.</p>","PeriodicalId":13189,"journal":{"name":"Hydrological Processes","volume":"39 3","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hyp.70104","citationCount":"0","resultStr":"{\"title\":\"Modelling of Total Phosphorus and Nitrate Using a Travel Time Approach in the Duck River Catchment, Australia\",\"authors\":\"Zahra Riazi,&nbsp;Andrew William Western\",\"doi\":\"10.1002/hyp.70104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Total phosphorus (TP) and nitrate are important non-conservative contaminants of streams. They vary strongly in response to climatic, hydrologic, and other drivers and are affected by different flow paths. Water residence and travel time distributions carrying information about sources of streamflow can potentially provide a basis for modelling nitrate and TP dynamics. In this study, we use a travel time model coupled with age—concentration relationships to simulate nitrate and TP concentrations in the Duck River catchment, NW Tasmania, Australia. A modified version of the Tran-SAS model was used with time-varying beta storage selection functions, calibrated against high-frequency electrical conductivity (EC) observations. Concentrations of TP and nitrate were then modelled using the water TTDs coupled with age-concentration relationships for TP and nitrate. This approach separated biogeochemical effects from water travel time and ensured consistent TTDs underpinning the transport of different nutrients. Two years (2008 and 2009 water years) of high-frequency nutrient concentrations were used for model calibration and validation. It was initially hypothesised that the age-concentration relationships for nitrate and TP could be temporally fixed, with the seasonal variation in residence time distribution capturing any seasonality in nutrient behaviour. The models performed moderately under this hypothesis; however, residual analysis clearly demonstrated seasonal declines in the concentrations of TP and nitrate during events across the high flow season. Simulations of TP and nitrate were markedly improved by using different source concentrations: one for the early high flow season and the other for the remainder of the year. Both Nash-Sutcliffe Efficiency and the combined seasonal and event dynamics of nitrate and TP were markedly improved by using different source concentrations for these two different periods. This suggests that land management and biogeochemical processing are important influences on the temporal dynamics of nutrients in streams. The study informs future developments of TTD-based water quality modelling and demonstrates the need to include temporally dynamic nutrient source concentrations for young water.</p>\",\"PeriodicalId\":13189,\"journal\":{\"name\":\"Hydrological Processes\",\"volume\":\"39 3\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hyp.70104\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrological Processes\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/hyp.70104\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrological Processes","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hyp.70104","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

摘要

总磷和硝酸盐是河流中重要的非保守性污染物。它们在气候、水文和其他驱动因素的影响下变化很大,并受到不同流动路径的影响。水的停留和走时分布携带着有关水流来源的信息,可能为模拟硝酸盐和总磷的动态提供基础。在这项研究中,我们使用了一个结合年龄-浓度关系的旅行时间模型来模拟澳大利亚西北塔斯马尼亚州鸭河流域的硝酸盐和总磷浓度。trans - sas模型的修改版本使用时变β存储选择函数,根据高频电导率(EC)观测进行校准。然后利用水体TTDs与TP和硝酸盐的年龄-浓度关系对TP和硝酸盐的浓度进行建模。该方法将生物地球化学效应与水的传播时间分离开来,确保了不同营养物质运输的TTDs一致。使用两年(2008和2009水年)的高频营养物浓度进行模型校准和验证。最初的假设是,硝酸盐和总磷的年龄-浓度关系可能是暂时固定的,停留时间分布的季节性变化捕捉了养分行为的任何季节性。在这个假设下,模型表现一般;然而,残差分析清楚地表明,在整个高流量季节,TP和硝酸盐的浓度呈季节性下降。不同的源浓度对TP和硝态氮的模拟效果有显著改善:一个源浓度用于高流量季早期,另一个源浓度用于全年剩余时间。在两个不同时期,不同的源浓度均显著提高了硝态氮和总磷的纳什-苏特克利夫效率以及季节和事件的联合动态。这表明土地管理和生物地球化学处理是影响河流养分时间动态的重要因素。该研究为基于ttd的水质模型的未来发展提供了信息,并证明需要包括年轻水的时间动态营养源浓度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Modelling of Total Phosphorus and Nitrate Using a Travel Time Approach in the Duck River Catchment, Australia

Modelling of Total Phosphorus and Nitrate Using a Travel Time Approach in the Duck River Catchment, Australia

Total phosphorus (TP) and nitrate are important non-conservative contaminants of streams. They vary strongly in response to climatic, hydrologic, and other drivers and are affected by different flow paths. Water residence and travel time distributions carrying information about sources of streamflow can potentially provide a basis for modelling nitrate and TP dynamics. In this study, we use a travel time model coupled with age—concentration relationships to simulate nitrate and TP concentrations in the Duck River catchment, NW Tasmania, Australia. A modified version of the Tran-SAS model was used with time-varying beta storage selection functions, calibrated against high-frequency electrical conductivity (EC) observations. Concentrations of TP and nitrate were then modelled using the water TTDs coupled with age-concentration relationships for TP and nitrate. This approach separated biogeochemical effects from water travel time and ensured consistent TTDs underpinning the transport of different nutrients. Two years (2008 and 2009 water years) of high-frequency nutrient concentrations were used for model calibration and validation. It was initially hypothesised that the age-concentration relationships for nitrate and TP could be temporally fixed, with the seasonal variation in residence time distribution capturing any seasonality in nutrient behaviour. The models performed moderately under this hypothesis; however, residual analysis clearly demonstrated seasonal declines in the concentrations of TP and nitrate during events across the high flow season. Simulations of TP and nitrate were markedly improved by using different source concentrations: one for the early high flow season and the other for the remainder of the year. Both Nash-Sutcliffe Efficiency and the combined seasonal and event dynamics of nitrate and TP were markedly improved by using different source concentrations for these two different periods. This suggests that land management and biogeochemical processing are important influences on the temporal dynamics of nutrients in streams. The study informs future developments of TTD-based water quality modelling and demonstrates the need to include temporally dynamic nutrient source concentrations for young water.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Hydrological Processes
Hydrological Processes 环境科学-水资源
CiteScore
6.00
自引率
12.50%
发文量
313
审稿时长
2-4 weeks
期刊介绍: Hydrological Processes is an international journal that publishes original scientific papers advancing understanding of the mechanisms underlying the movement and storage of water in the environment, and the interaction of water with geological, biogeochemical, atmospheric and ecological systems. Not all papers related to water resources are appropriate for submission to this journal; rather we seek papers that clearly articulate the role(s) of hydrological processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信