任意系数广义★$\star$ -Sylvester方程解的可解性和唯一性

IF 1 2区 数学 Q1 MATHEMATICS
Fernando De Terán, Bruno Iannazzo
{"title":"任意系数广义★$\\star$ -Sylvester方程解的可解性和唯一性","authors":"Fernando De Terán,&nbsp;Bruno Iannazzo","doi":"10.1112/jlms.70129","DOIUrl":null,"url":null,"abstract":"<p>We analyze the consistency and uniqueness of solution of the generalized <span></span><math>\n <semantics>\n <mi>★</mi>\n <annotation>$\\star$</annotation>\n </semantics></math>-Sylvester equation <span></span><math>\n <semantics>\n <mrow>\n <mi>A</mi>\n <mi>X</mi>\n <mi>B</mi>\n <mo>+</mo>\n <mi>C</mi>\n <msup>\n <mi>X</mi>\n <mi>★</mi>\n </msup>\n <mi>D</mi>\n <mo>=</mo>\n <mi>E</mi>\n </mrow>\n <annotation>$AXB+CX^\\star D=E$</annotation>\n </semantics></math>, with <span></span><math>\n <semantics>\n <mrow>\n <mi>A</mi>\n <mo>,</mo>\n <mi>B</mi>\n <mo>,</mo>\n <mi>C</mi>\n <mo>,</mo>\n <mi>D</mi>\n </mrow>\n <annotation>$A,B,C, D$</annotation>\n </semantics></math>, and <span></span><math>\n <semantics>\n <mi>E</mi>\n <annotation>$E$</annotation>\n </semantics></math> being complex matrices (and <span></span><math>\n <semantics>\n <mi>★</mi>\n <annotation>$\\star$</annotation>\n </semantics></math> being either the transpose or the conjugate transpose). In particular, we obtain characterizations for the equation to have at most one solution and to be consistent for any right-hand side. Such characterizations are given in terms of spectral properties of the matrix pencils <span></span><math>\n <semantics>\n <mfenced>\n <mtable>\n <mtr>\n <mtd>\n <mrow>\n <mi>λ</mi>\n <msup>\n <mi>D</mi>\n <mi>★</mi>\n </msup>\n </mrow>\n </mtd>\n <mtd>\n <msup>\n <mi>B</mi>\n <mi>★</mi>\n </msup>\n </mtd>\n </mtr>\n <mtr>\n <mtd>\n <mi>A</mi>\n </mtd>\n <mtd>\n <mrow>\n <mi>λ</mi>\n <mi>C</mi>\n </mrow>\n </mtd>\n </mtr>\n </mtable>\n </mfenced>\n <annotation>$\\left[\\begin{smallmatrix}\\lambda D^\\star &amp; B^\\star \\\\ A &amp; \\lambda C\\end{smallmatrix}\\right]$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mfenced>\n <mtable>\n <mtr>\n <mtd>\n <mrow>\n <mi>λ</mi>\n <msup>\n <mi>C</mi>\n <mi>★</mi>\n </msup>\n </mrow>\n </mtd>\n <mtd>\n <mi>B</mi>\n </mtd>\n </mtr>\n <mtr>\n <mtd>\n <msup>\n <mi>A</mi>\n <mi>★</mi>\n </msup>\n </mtd>\n <mtd>\n <mrow>\n <mi>λ</mi>\n <mi>D</mi>\n </mrow>\n </mtd>\n </mtr>\n </mtable>\n </mfenced>\n <annotation>$\\left[\\begin{smallmatrix}\\lambda C^\\star &amp; B\\\\ A^\\star &amp; \\lambda D\\end{smallmatrix}\\right]$</annotation>\n </semantics></math>, respectively. This approach deals with matrices whose size is of the same order as that of <span></span><math>\n <semantics>\n <mrow>\n <mi>A</mi>\n <mo>,</mo>\n <mi>B</mi>\n <mo>,</mo>\n <mi>C</mi>\n </mrow>\n <annotation>$A,B,C$</annotation>\n </semantics></math>, and <span></span><math>\n <semantics>\n <mi>D</mi>\n <annotation>$D$</annotation>\n </semantics></math>, contrary to the naive procedure that addresses the equation as a linear system, whose coefficient matrix can be much larger. The characterizations are valid in the most general setting, namely for all coefficient matrices <span></span><math>\n <semantics>\n <mrow>\n <mi>A</mi>\n <mo>,</mo>\n <mi>B</mi>\n <mo>,</mo>\n <mi>C</mi>\n </mrow>\n <annotation>$A,B,C$</annotation>\n </semantics></math>, and <span></span><math>\n <semantics>\n <mi>D</mi>\n <annotation>$D$</annotation>\n </semantics></math> for which the equation is well-defined, and generalize the known characterizations for the case where they are all square. As a corollary, we obtain necessary and sufficient conditions for the <span></span><math>\n <semantics>\n <mi>★</mi>\n <annotation>$\\star$</annotation>\n </semantics></math>-Sylvester equation <span></span><math>\n <semantics>\n <mrow>\n <mi>A</mi>\n <mi>X</mi>\n <mo>+</mo>\n <msup>\n <mi>X</mi>\n <mi>★</mi>\n </msup>\n <mi>D</mi>\n <mo>=</mo>\n <mi>E</mi>\n </mrow>\n <annotation>$AX+X^\\star D=E$</annotation>\n </semantics></math> and the <span></span><math>\n <semantics>\n <mi>★</mi>\n <annotation>$\\star$</annotation>\n </semantics></math>-Stein equation <span></span><math>\n <semantics>\n <mrow>\n <mi>X</mi>\n <mo>+</mo>\n <mi>C</mi>\n <msup>\n <mi>X</mi>\n <mi>★</mi>\n </msup>\n <mi>D</mi>\n <mo>=</mo>\n <mi>E</mi>\n </mrow>\n <annotation>$X+CX^\\star D=E$</annotation>\n </semantics></math> to have at most one solution or to be consistent, for any right-hand side <span></span><math>\n <semantics>\n <mi>E</mi>\n <annotation>$E$</annotation>\n </semantics></math>.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 3","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solvability and uniqueness of solution of generalized \\n \\n ★\\n $\\\\star$\\n -Sylvester equations with arbitrary coefficients\",\"authors\":\"Fernando De Terán,&nbsp;Bruno Iannazzo\",\"doi\":\"10.1112/jlms.70129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We analyze the consistency and uniqueness of solution of the generalized <span></span><math>\\n <semantics>\\n <mi>★</mi>\\n <annotation>$\\\\star$</annotation>\\n </semantics></math>-Sylvester equation <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>A</mi>\\n <mi>X</mi>\\n <mi>B</mi>\\n <mo>+</mo>\\n <mi>C</mi>\\n <msup>\\n <mi>X</mi>\\n <mi>★</mi>\\n </msup>\\n <mi>D</mi>\\n <mo>=</mo>\\n <mi>E</mi>\\n </mrow>\\n <annotation>$AXB+CX^\\\\star D=E$</annotation>\\n </semantics></math>, with <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>A</mi>\\n <mo>,</mo>\\n <mi>B</mi>\\n <mo>,</mo>\\n <mi>C</mi>\\n <mo>,</mo>\\n <mi>D</mi>\\n </mrow>\\n <annotation>$A,B,C, D$</annotation>\\n </semantics></math>, and <span></span><math>\\n <semantics>\\n <mi>E</mi>\\n <annotation>$E$</annotation>\\n </semantics></math> being complex matrices (and <span></span><math>\\n <semantics>\\n <mi>★</mi>\\n <annotation>$\\\\star$</annotation>\\n </semantics></math> being either the transpose or the conjugate transpose). In particular, we obtain characterizations for the equation to have at most one solution and to be consistent for any right-hand side. Such characterizations are given in terms of spectral properties of the matrix pencils <span></span><math>\\n <semantics>\\n <mfenced>\\n <mtable>\\n <mtr>\\n <mtd>\\n <mrow>\\n <mi>λ</mi>\\n <msup>\\n <mi>D</mi>\\n <mi>★</mi>\\n </msup>\\n </mrow>\\n </mtd>\\n <mtd>\\n <msup>\\n <mi>B</mi>\\n <mi>★</mi>\\n </msup>\\n </mtd>\\n </mtr>\\n <mtr>\\n <mtd>\\n <mi>A</mi>\\n </mtd>\\n <mtd>\\n <mrow>\\n <mi>λ</mi>\\n <mi>C</mi>\\n </mrow>\\n </mtd>\\n </mtr>\\n </mtable>\\n </mfenced>\\n <annotation>$\\\\left[\\\\begin{smallmatrix}\\\\lambda D^\\\\star &amp; B^\\\\star \\\\\\\\ A &amp; \\\\lambda C\\\\end{smallmatrix}\\\\right]$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mfenced>\\n <mtable>\\n <mtr>\\n <mtd>\\n <mrow>\\n <mi>λ</mi>\\n <msup>\\n <mi>C</mi>\\n <mi>★</mi>\\n </msup>\\n </mrow>\\n </mtd>\\n <mtd>\\n <mi>B</mi>\\n </mtd>\\n </mtr>\\n <mtr>\\n <mtd>\\n <msup>\\n <mi>A</mi>\\n <mi>★</mi>\\n </msup>\\n </mtd>\\n <mtd>\\n <mrow>\\n <mi>λ</mi>\\n <mi>D</mi>\\n </mrow>\\n </mtd>\\n </mtr>\\n </mtable>\\n </mfenced>\\n <annotation>$\\\\left[\\\\begin{smallmatrix}\\\\lambda C^\\\\star &amp; B\\\\\\\\ A^\\\\star &amp; \\\\lambda D\\\\end{smallmatrix}\\\\right]$</annotation>\\n </semantics></math>, respectively. This approach deals with matrices whose size is of the same order as that of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>A</mi>\\n <mo>,</mo>\\n <mi>B</mi>\\n <mo>,</mo>\\n <mi>C</mi>\\n </mrow>\\n <annotation>$A,B,C$</annotation>\\n </semantics></math>, and <span></span><math>\\n <semantics>\\n <mi>D</mi>\\n <annotation>$D$</annotation>\\n </semantics></math>, contrary to the naive procedure that addresses the equation as a linear system, whose coefficient matrix can be much larger. The characterizations are valid in the most general setting, namely for all coefficient matrices <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>A</mi>\\n <mo>,</mo>\\n <mi>B</mi>\\n <mo>,</mo>\\n <mi>C</mi>\\n </mrow>\\n <annotation>$A,B,C$</annotation>\\n </semantics></math>, and <span></span><math>\\n <semantics>\\n <mi>D</mi>\\n <annotation>$D$</annotation>\\n </semantics></math> for which the equation is well-defined, and generalize the known characterizations for the case where they are all square. As a corollary, we obtain necessary and sufficient conditions for the <span></span><math>\\n <semantics>\\n <mi>★</mi>\\n <annotation>$\\\\star$</annotation>\\n </semantics></math>-Sylvester equation <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>A</mi>\\n <mi>X</mi>\\n <mo>+</mo>\\n <msup>\\n <mi>X</mi>\\n <mi>★</mi>\\n </msup>\\n <mi>D</mi>\\n <mo>=</mo>\\n <mi>E</mi>\\n </mrow>\\n <annotation>$AX+X^\\\\star D=E$</annotation>\\n </semantics></math> and the <span></span><math>\\n <semantics>\\n <mi>★</mi>\\n <annotation>$\\\\star$</annotation>\\n </semantics></math>-Stein equation <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>X</mi>\\n <mo>+</mo>\\n <mi>C</mi>\\n <msup>\\n <mi>X</mi>\\n <mi>★</mi>\\n </msup>\\n <mi>D</mi>\\n <mo>=</mo>\\n <mi>E</mi>\\n </mrow>\\n <annotation>$X+CX^\\\\star D=E$</annotation>\\n </semantics></math> to have at most one solution or to be consistent, for any right-hand side <span></span><math>\\n <semantics>\\n <mi>E</mi>\\n <annotation>$E$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"111 3\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70129\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70129","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文分析了广义★$\star$ -Sylvester方程A X B + C X★D = E $AXB+CX^\star D=E$解的一致性和唯一性。其中A, B, C, D $A,B,C, D$和E $E$是复矩阵(★$\star$是转置或共轭转置)。特别地,我们得到了方程最多有一个解并且对任意右手边都是一致的特征。这种表征是根据矩阵铅笔λ D★B的光谱性质给出的★A λ C $\left[\begin{smallmatrix}\lambda D^\star & B^\star \\ A & \lambda C\end{smallmatrix}\right]$及λ c★b a★λ D $\left[\begin{smallmatrix}\lambda C^\star & B\\ A^\star & \lambda D\end{smallmatrix}\right]$。这种方法处理大小与A、B、C $A,B,C$和D $D$相同阶的矩阵,这与将方程处理为线性系统的朴素过程相反,其系数矩阵可以大得多。这些表征在最一般的情况下是有效的,即对于方程定义良好的所有系数矩阵A, B, C $A,B,C$和D $D$,并将已知的表征推广到它们都是平方的情况。作为推论,得到了★$\star$ -Sylvester方程A X + X★D = E $AX+X^\star D=E$和★$\star$的充分必要条件-斯坦因方程X + C X★D = E $X+CX^\star D=E$对于任意右手边E,最多有一个解或一致$E$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solvability and uniqueness of solution of generalized ★ $\star$ -Sylvester equations with arbitrary coefficients

We analyze the consistency and uniqueness of solution of the generalized $\star$ -Sylvester equation  A X B + C X D = E $AXB+CX^\star D=E$ , with A , B , C , D $A,B,C, D$ , and E $E$ being complex matrices (and $\star$ being either the transpose or the conjugate transpose). In particular, we obtain characterizations for the equation to have at most one solution and to be consistent for any right-hand side. Such characterizations are given in terms of spectral properties of the matrix pencils λ D B A λ C $\left[\begin{smallmatrix}\lambda D^\star & B^\star \\ A & \lambda C\end{smallmatrix}\right]$ and λ C B A λ D $\left[\begin{smallmatrix}\lambda C^\star & B\\ A^\star & \lambda D\end{smallmatrix}\right]$ , respectively. This approach deals with matrices whose size is of the same order as that of A , B , C $A,B,C$ , and D $D$ , contrary to the naive procedure that addresses the equation as a linear system, whose coefficient matrix can be much larger. The characterizations are valid in the most general setting, namely for all coefficient matrices A , B , C $A,B,C$ , and D $D$ for which the equation is well-defined, and generalize the known characterizations for the case where they are all square. As a corollary, we obtain necessary and sufficient conditions for the $\star$ -Sylvester equation  A X + X D = E $AX+X^\star D=E$ and the $\star$ -Stein equation  X + C X D = E $X+CX^\star D=E$ to have at most one solution or to be consistent, for any right-hand side E $E$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信