Haojue Wang, Tao Yuan, Xiao Yu, Yi Wang, Changxing Liu, Ziqing Li, Shui Sun
{"title":"诺沃乔宁通过调节氧化还原信号和钙振荡减轻炎性骨溶解和胶原诱导的关节炎","authors":"Haojue Wang, Tao Yuan, Xiao Yu, Yi Wang, Changxing Liu, Ziqing Li, Shui Sun","doi":"10.1111/jcmm.70492","DOIUrl":null,"url":null,"abstract":"<p>Norwogonin is a flavonoid extraction derived from <i>Scutellaria baicalensis</i>. However, its potential mechanisms in the context of rheumatoid arthritis (RA) are unclear. This study investigates the specific effects and associated targets of Norwogonin in RA-related inflammatory osteolysis. Network pharmacology was conducted to analyse the core targets and signalling pathways of Norwogonin in RA. In vitro experiments were carried out to explore the actual effects of Norwogonin on osteoclast behaviours and related signalling mechanisms. In vivo studies further validated the therapeutic effect of Norwogonin in collagen-induced arthritis (CIA) mice. The network pharmacological analysis identified 18 shared targets between Norwogonin and RA, indicating a connection with inflammatory response and oxidoreductase activity. For biological validations, the results of in vitro experiments revealed 160 μM of Norwogonin inhibited LPS-driven osteoclast differentiation and function. The qPCR assay and Western blot analysis also disclosed consistently diminished changes to osteoclastic marker genes and proteins due to Norwogonin treatment, including those for osteoclast differentiation (Traf6, Tnfrsf11a and Nfatc1), fusion (Atp6v0d2, Dcstamp and Ocstamp) and function (Mmp9, Ctsk and Acp5). Further mechanism study revealed Norwogonin suppressed LPS-driven ROS production and calcium (Ca<sup>2+</sup>) oscillations. Also, intraperitoneal injection of 30 mg/kg Norwogonin every other day successfully mitigated clinical arthritis progression and attenuated bone destruction in the CIA model. Our study scrutinises Norwogonin's therapeutic prospects in treating RA and illustrates its inhibitory effects and potential mechanism within LPS-induced osteoclastogenesis and CIA mice, providing a basis for further translational research on Norwogonin in the treatment of RA-related inflammatory osteolysis.</p>","PeriodicalId":101321,"journal":{"name":"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE","volume":"29 6","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jcmm.70492","citationCount":"0","resultStr":"{\"title\":\"Norwogonin Attenuates Inflammatory Osteolysis and Collagen-Induced Arthritis via Modulating Redox Signalling and Calcium Oscillations\",\"authors\":\"Haojue Wang, Tao Yuan, Xiao Yu, Yi Wang, Changxing Liu, Ziqing Li, Shui Sun\",\"doi\":\"10.1111/jcmm.70492\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Norwogonin is a flavonoid extraction derived from <i>Scutellaria baicalensis</i>. However, its potential mechanisms in the context of rheumatoid arthritis (RA) are unclear. This study investigates the specific effects and associated targets of Norwogonin in RA-related inflammatory osteolysis. Network pharmacology was conducted to analyse the core targets and signalling pathways of Norwogonin in RA. In vitro experiments were carried out to explore the actual effects of Norwogonin on osteoclast behaviours and related signalling mechanisms. In vivo studies further validated the therapeutic effect of Norwogonin in collagen-induced arthritis (CIA) mice. The network pharmacological analysis identified 18 shared targets between Norwogonin and RA, indicating a connection with inflammatory response and oxidoreductase activity. For biological validations, the results of in vitro experiments revealed 160 μM of Norwogonin inhibited LPS-driven osteoclast differentiation and function. The qPCR assay and Western blot analysis also disclosed consistently diminished changes to osteoclastic marker genes and proteins due to Norwogonin treatment, including those for osteoclast differentiation (Traf6, Tnfrsf11a and Nfatc1), fusion (Atp6v0d2, Dcstamp and Ocstamp) and function (Mmp9, Ctsk and Acp5). Further mechanism study revealed Norwogonin suppressed LPS-driven ROS production and calcium (Ca<sup>2+</sup>) oscillations. Also, intraperitoneal injection of 30 mg/kg Norwogonin every other day successfully mitigated clinical arthritis progression and attenuated bone destruction in the CIA model. Our study scrutinises Norwogonin's therapeutic prospects in treating RA and illustrates its inhibitory effects and potential mechanism within LPS-induced osteoclastogenesis and CIA mice, providing a basis for further translational research on Norwogonin in the treatment of RA-related inflammatory osteolysis.</p>\",\"PeriodicalId\":101321,\"journal\":{\"name\":\"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE\",\"volume\":\"29 6\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jcmm.70492\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jcmm.70492\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jcmm.70492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Norwogonin Attenuates Inflammatory Osteolysis and Collagen-Induced Arthritis via Modulating Redox Signalling and Calcium Oscillations
Norwogonin is a flavonoid extraction derived from Scutellaria baicalensis. However, its potential mechanisms in the context of rheumatoid arthritis (RA) are unclear. This study investigates the specific effects and associated targets of Norwogonin in RA-related inflammatory osteolysis. Network pharmacology was conducted to analyse the core targets and signalling pathways of Norwogonin in RA. In vitro experiments were carried out to explore the actual effects of Norwogonin on osteoclast behaviours and related signalling mechanisms. In vivo studies further validated the therapeutic effect of Norwogonin in collagen-induced arthritis (CIA) mice. The network pharmacological analysis identified 18 shared targets between Norwogonin and RA, indicating a connection with inflammatory response and oxidoreductase activity. For biological validations, the results of in vitro experiments revealed 160 μM of Norwogonin inhibited LPS-driven osteoclast differentiation and function. The qPCR assay and Western blot analysis also disclosed consistently diminished changes to osteoclastic marker genes and proteins due to Norwogonin treatment, including those for osteoclast differentiation (Traf6, Tnfrsf11a and Nfatc1), fusion (Atp6v0d2, Dcstamp and Ocstamp) and function (Mmp9, Ctsk and Acp5). Further mechanism study revealed Norwogonin suppressed LPS-driven ROS production and calcium (Ca2+) oscillations. Also, intraperitoneal injection of 30 mg/kg Norwogonin every other day successfully mitigated clinical arthritis progression and attenuated bone destruction in the CIA model. Our study scrutinises Norwogonin's therapeutic prospects in treating RA and illustrates its inhibitory effects and potential mechanism within LPS-induced osteoclastogenesis and CIA mice, providing a basis for further translational research on Norwogonin in the treatment of RA-related inflammatory osteolysis.
期刊介绍:
The Journal of Cellular and Molecular Medicine serves as a bridge between physiology and cellular medicine, as well as molecular biology and molecular therapeutics. With a 20-year history, the journal adopts an interdisciplinary approach to showcase innovative discoveries.
It publishes research aimed at advancing the collective understanding of the cellular and molecular mechanisms underlying diseases. The journal emphasizes translational studies that translate this knowledge into therapeutic strategies. Being fully open access, the journal is accessible to all readers.