用线性策略解决非线性价格影响

IF 1.6 3区 经济学 Q3 BUSINESS, FINANCE
Xavier Brokmann, David Itkin, Johannes Muhle-Karbe, Peter Schmidt
{"title":"用线性策略解决非线性价格影响","authors":"Xavier Brokmann,&nbsp;David Itkin,&nbsp;Johannes Muhle-Karbe,&nbsp;Peter Schmidt","doi":"10.1111/mafi.12449","DOIUrl":null,"url":null,"abstract":"<p>Empirical studies in various contexts find that the price impact of large trades approximately follows a power law with exponent between 0.4 and 0.7. Yet, tractable formulas for the portfolios that trade off predictive trading signals, risk, and trading costs in an optimal manner are only available for quadratic costs corresponding to linear price impact. In this paper, we show that the resulting linear strategies allow to achieve virtually optimal performance also for realistic nonlinear price impact, <i>if</i> the “effective” quadratic cost parameter is chosen appropriately. To wit, for a wide range of risk levels, this leads to performance losses below 2% compared to a numerical algorithm proposed by Kolm and Ritter, run at very high accuracy. The effective quadratic cost depends on the portfolio risk and concavity of the impact function, but can be computed without any sophisticated numerics by simply maximizing an explicit scalar function.</p>","PeriodicalId":49867,"journal":{"name":"Mathematical Finance","volume":"35 2","pages":"422-440"},"PeriodicalIF":1.6000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mafi.12449","citationCount":"0","resultStr":"{\"title\":\"Tackling nonlinear price impact with linear strategies\",\"authors\":\"Xavier Brokmann,&nbsp;David Itkin,&nbsp;Johannes Muhle-Karbe,&nbsp;Peter Schmidt\",\"doi\":\"10.1111/mafi.12449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Empirical studies in various contexts find that the price impact of large trades approximately follows a power law with exponent between 0.4 and 0.7. Yet, tractable formulas for the portfolios that trade off predictive trading signals, risk, and trading costs in an optimal manner are only available for quadratic costs corresponding to linear price impact. In this paper, we show that the resulting linear strategies allow to achieve virtually optimal performance also for realistic nonlinear price impact, <i>if</i> the “effective” quadratic cost parameter is chosen appropriately. To wit, for a wide range of risk levels, this leads to performance losses below 2% compared to a numerical algorithm proposed by Kolm and Ritter, run at very high accuracy. The effective quadratic cost depends on the portfolio risk and concavity of the impact function, but can be computed without any sophisticated numerics by simply maximizing an explicit scalar function.</p>\",\"PeriodicalId\":49867,\"journal\":{\"name\":\"Mathematical Finance\",\"volume\":\"35 2\",\"pages\":\"422-440\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mafi.12449\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Finance\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/mafi.12449\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Finance","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/mafi.12449","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

在不同背景下的实证研究发现,大宗交易对价格的影响大致遵循指数在0.4 ~ 0.7之间的幂律。然而,以最优方式权衡预测交易信号、风险和交易成本的投资组合的易于处理的公式仅适用于与线性价格影响相对应的二次成本。在本文中,我们表明,如果“有效的”二次成本参数被适当地选择,所得到的线性策略允许在现实的非线性价格影响下实现几乎最优的性能。也就是说,对于大范围的风险水平,与Kolm和Ritter提出的数值算法相比,这导致性能损失低于2%,运行精度非常高。有效的二次成本取决于投资组合的风险和影响函数的凹凸性,但可以通过简单地最大化显式标量函数来计算,而不需要任何复杂的数值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Tackling nonlinear price impact with linear strategies

Tackling nonlinear price impact with linear strategies

Empirical studies in various contexts find that the price impact of large trades approximately follows a power law with exponent between 0.4 and 0.7. Yet, tractable formulas for the portfolios that trade off predictive trading signals, risk, and trading costs in an optimal manner are only available for quadratic costs corresponding to linear price impact. In this paper, we show that the resulting linear strategies allow to achieve virtually optimal performance also for realistic nonlinear price impact, if the “effective” quadratic cost parameter is chosen appropriately. To wit, for a wide range of risk levels, this leads to performance losses below 2% compared to a numerical algorithm proposed by Kolm and Ritter, run at very high accuracy. The effective quadratic cost depends on the portfolio risk and concavity of the impact function, but can be computed without any sophisticated numerics by simply maximizing an explicit scalar function.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Finance
Mathematical Finance 数学-数学跨学科应用
CiteScore
4.10
自引率
6.20%
发文量
27
审稿时长
>12 weeks
期刊介绍: Mathematical Finance seeks to publish original research articles focused on the development and application of novel mathematical and statistical methods for the analysis of financial problems. The journal welcomes contributions on new statistical methods for the analysis of financial problems. Empirical results will be appropriate to the extent that they illustrate a statistical technique, validate a model or provide insight into a financial problem. Papers whose main contribution rests on empirical results derived with standard approaches will not be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信