通过脊髓 SGK1/NF-κB 信号通路调节 SGK1、NR2A 和 NR2B 的表达,阐明右美托咪定诱导的神经病理性疼痛镇痛耐受机制

IF 5.3
Wang Huikang, Cao Shiya, Pan Di, Faisal Ayub Kiani, Li Hao, Nan Sha, Lin Xuan, Mahmoud M. Abouelfetouh, Zulfiqar Ahmed, Ding Mingxing, Ding Yi
{"title":"通过脊髓 SGK1/NF-κB 信号通路调节 SGK1、NR2A 和 NR2B 的表达,阐明右美托咪定诱导的神经病理性疼痛镇痛耐受机制","authors":"Wang Huikang,&nbsp;Cao Shiya,&nbsp;Pan Di,&nbsp;Faisal Ayub Kiani,&nbsp;Li Hao,&nbsp;Nan Sha,&nbsp;Lin Xuan,&nbsp;Mahmoud M. Abouelfetouh,&nbsp;Zulfiqar Ahmed,&nbsp;Ding Mingxing,&nbsp;Ding Yi","doi":"10.1111/jcmm.70372","DOIUrl":null,"url":null,"abstract":"<p>Neuropathic pain (NP), resulting from nerve damage, is difficult to manage and often requires long-term treatment. However, prolonged use of pain medications can lead to addiction and reduced effectiveness over time. Understanding drug tolerance is essential for developing improved pain management strategies. Dexmedetomidine (DEX) is effective in targeting the <i>α2</i>-adrenergic receptor, providing relief from pain, especially NP. However, its extended use leads to tolerance and hinders its clinical utility. Herein, we investigated tolerance mechanisms and potential applications of this drug in managing NP. Adult C57BL/6 mice (male) were distributed into DEX Dosage Groups (<i>n</i> = 48), DEX Tolerance Model Groups (<i>n</i> = 32), <i>SGK1</i> Inhibitor GSK650394 Groups (<i>n</i> = 48), and <i>NF</i>-<i>κB</i> Inhibitor PDTC Groups (<i>n</i> = 32) to explore dexmedetomidine's effects on NP and tolerance mechanisms. NP was established via selective ligation of the sciatic nerve branch (SNI), followed by administration of DEX. The results revealed a dose-dependent analgesic effect of DEX, with significant increases in pain thresholds observed compared to the sham group (<i>p</i> &lt; 0.05). Optimal efficacy was found at a dose of 30 μg/kg, indicating its potential as an effective treatment for NP (<i>p</i> &lt; 0.05). However, continuous administration of DEX over 13 days induced analgesic tolerance, evidenced by an initial increase in pain thresholds followed by a gradual decrease (<i>p</i> &lt; 0.05). Despite an initial efficacy in elevating pain thresholds, the analgesic effect of DEX diminished over time, returning to pre-dose levels after 5 days (<i>p</i> &lt; 0.05). Transcriptome sequencing of spinal cord samples from mice receiving multiple DEX injections revealed differential gene expression patterns, notably upregulation of <i>SGK1</i>, <i>NR2A</i>, and <i>NR2B</i> subunits (<i>p</i> &lt; 0.05). Inhibiting <i>SGK1</i> mitigated DEX-induced tolerance, suggesting its involvement in tolerance development (<i>p</i> &lt; 0.05). Moreover, <i>NF</i>-<i>κB</i> inhibition reversed DEX-induced tolerance and implicated the <i>SGK1</i>-<i>NF</i>-<i>κB</i> pathway in the mediation of analgesic tolerance. To sum up, these findings revealed the molecular mechanism underlying DEX-induced analgesic tolerance in the NP model and offer potential avenues for future therapeutic interventions.</p>","PeriodicalId":101321,"journal":{"name":"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE","volume":"29 6","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jcmm.70372","citationCount":"0","resultStr":"{\"title\":\"Elucidation of Dexmedetomidine-Induced Analgesic Tolerance Mechanisms in Neuropathic Pain With Modulation of SGK1, NR2A, and NR2B Expression via the Spinal SGK1/NF-κB Signalling Pathway\",\"authors\":\"Wang Huikang,&nbsp;Cao Shiya,&nbsp;Pan Di,&nbsp;Faisal Ayub Kiani,&nbsp;Li Hao,&nbsp;Nan Sha,&nbsp;Lin Xuan,&nbsp;Mahmoud M. Abouelfetouh,&nbsp;Zulfiqar Ahmed,&nbsp;Ding Mingxing,&nbsp;Ding Yi\",\"doi\":\"10.1111/jcmm.70372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Neuropathic pain (NP), resulting from nerve damage, is difficult to manage and often requires long-term treatment. However, prolonged use of pain medications can lead to addiction and reduced effectiveness over time. Understanding drug tolerance is essential for developing improved pain management strategies. Dexmedetomidine (DEX) is effective in targeting the <i>α2</i>-adrenergic receptor, providing relief from pain, especially NP. However, its extended use leads to tolerance and hinders its clinical utility. Herein, we investigated tolerance mechanisms and potential applications of this drug in managing NP. Adult C57BL/6 mice (male) were distributed into DEX Dosage Groups (<i>n</i> = 48), DEX Tolerance Model Groups (<i>n</i> = 32), <i>SGK1</i> Inhibitor GSK650394 Groups (<i>n</i> = 48), and <i>NF</i>-<i>κB</i> Inhibitor PDTC Groups (<i>n</i> = 32) to explore dexmedetomidine's effects on NP and tolerance mechanisms. NP was established via selective ligation of the sciatic nerve branch (SNI), followed by administration of DEX. The results revealed a dose-dependent analgesic effect of DEX, with significant increases in pain thresholds observed compared to the sham group (<i>p</i> &lt; 0.05). Optimal efficacy was found at a dose of 30 μg/kg, indicating its potential as an effective treatment for NP (<i>p</i> &lt; 0.05). However, continuous administration of DEX over 13 days induced analgesic tolerance, evidenced by an initial increase in pain thresholds followed by a gradual decrease (<i>p</i> &lt; 0.05). Despite an initial efficacy in elevating pain thresholds, the analgesic effect of DEX diminished over time, returning to pre-dose levels after 5 days (<i>p</i> &lt; 0.05). Transcriptome sequencing of spinal cord samples from mice receiving multiple DEX injections revealed differential gene expression patterns, notably upregulation of <i>SGK1</i>, <i>NR2A</i>, and <i>NR2B</i> subunits (<i>p</i> &lt; 0.05). Inhibiting <i>SGK1</i> mitigated DEX-induced tolerance, suggesting its involvement in tolerance development (<i>p</i> &lt; 0.05). Moreover, <i>NF</i>-<i>κB</i> inhibition reversed DEX-induced tolerance and implicated the <i>SGK1</i>-<i>NF</i>-<i>κB</i> pathway in the mediation of analgesic tolerance. To sum up, these findings revealed the molecular mechanism underlying DEX-induced analgesic tolerance in the NP model and offer potential avenues for future therapeutic interventions.</p>\",\"PeriodicalId\":101321,\"journal\":{\"name\":\"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE\",\"volume\":\"29 6\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jcmm.70372\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jcmm.70372\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jcmm.70372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

神经性疼痛(NP)是由神经损伤引起的,很难控制,通常需要长期治疗。然而,长期使用止痛药会导致上瘾,并随着时间的推移降低疗效。了解药物耐受性对于制定改进的疼痛管理策略至关重要。右美托咪定(DEX)可有效靶向α2-肾上腺素能受体,缓解疼痛,尤其是NP。然而,它的长期使用导致耐受性,阻碍了它的临床应用。在此,我们研究了这种药物在NP治疗中的耐受性机制和潜在应用。将成年C57BL/6小鼠(雄性)分为右美托咪定剂量组(n = 48)、右美托咪定耐受模型组(n = 32)、SGK1抑制剂GSK650394组(n = 48)和NF-κB抑制剂PDTC组(n = 32),探讨右美托咪定对NP的影响及耐受机制。通过选择性结扎坐骨神经分支(SNI)建立NP,然后给药DEX。结果显示,DEX的镇痛作用呈剂量依赖性,与假手术组相比,疼痛阈值显著升高(p < 0.05)。剂量为30 μg/kg时疗效最佳,提示其有治疗NP的潜力(p < 0.05)。然而,连续服用DEX超过13天可诱导镇痛耐受,疼痛阈值最初升高,随后逐渐降低(p < 0.05)。尽管DEX最初能提高疼痛阈值,但随着时间的推移,其镇痛效果逐渐减弱,5天后恢复到给药前水平(p < 0.05)。接受多次DEX注射的小鼠脊髓样本的转录组测序显示出基因表达模式的差异,特别是SGK1、NR2A和NR2B亚基的上调(p < 0.05)。抑制SGK1减轻了dex诱导的耐受性,表明其参与耐受性的发展(p < 0.05)。此外,NF-κB抑制逆转了dex诱导的耐受性,并暗示SGK1-NF-κB通路介导了镇痛耐受性。综上所述,这些发现揭示了NP模型中dex诱导的镇痛耐受的分子机制,并为未来的治疗干预提供了潜在的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Elucidation of Dexmedetomidine-Induced Analgesic Tolerance Mechanisms in Neuropathic Pain With Modulation of SGK1, NR2A, and NR2B Expression via the Spinal SGK1/NF-κB Signalling Pathway

Elucidation of Dexmedetomidine-Induced Analgesic Tolerance Mechanisms in Neuropathic Pain With Modulation of SGK1, NR2A, and NR2B Expression via the Spinal SGK1/NF-κB Signalling Pathway

Neuropathic pain (NP), resulting from nerve damage, is difficult to manage and often requires long-term treatment. However, prolonged use of pain medications can lead to addiction and reduced effectiveness over time. Understanding drug tolerance is essential for developing improved pain management strategies. Dexmedetomidine (DEX) is effective in targeting the α2-adrenergic receptor, providing relief from pain, especially NP. However, its extended use leads to tolerance and hinders its clinical utility. Herein, we investigated tolerance mechanisms and potential applications of this drug in managing NP. Adult C57BL/6 mice (male) were distributed into DEX Dosage Groups (n = 48), DEX Tolerance Model Groups (n = 32), SGK1 Inhibitor GSK650394 Groups (n = 48), and NF-κB Inhibitor PDTC Groups (n = 32) to explore dexmedetomidine's effects on NP and tolerance mechanisms. NP was established via selective ligation of the sciatic nerve branch (SNI), followed by administration of DEX. The results revealed a dose-dependent analgesic effect of DEX, with significant increases in pain thresholds observed compared to the sham group (p < 0.05). Optimal efficacy was found at a dose of 30 μg/kg, indicating its potential as an effective treatment for NP (p < 0.05). However, continuous administration of DEX over 13 days induced analgesic tolerance, evidenced by an initial increase in pain thresholds followed by a gradual decrease (p < 0.05). Despite an initial efficacy in elevating pain thresholds, the analgesic effect of DEX diminished over time, returning to pre-dose levels after 5 days (p < 0.05). Transcriptome sequencing of spinal cord samples from mice receiving multiple DEX injections revealed differential gene expression patterns, notably upregulation of SGK1, NR2A, and NR2B subunits (p < 0.05). Inhibiting SGK1 mitigated DEX-induced tolerance, suggesting its involvement in tolerance development (p < 0.05). Moreover, NF-κB inhibition reversed DEX-induced tolerance and implicated the SGK1-NF-κB pathway in the mediation of analgesic tolerance. To sum up, these findings revealed the molecular mechanism underlying DEX-induced analgesic tolerance in the NP model and offer potential avenues for future therapeutic interventions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.50
自引率
0.00%
发文量
0
期刊介绍: The Journal of Cellular and Molecular Medicine serves as a bridge between physiology and cellular medicine, as well as molecular biology and molecular therapeutics. With a 20-year history, the journal adopts an interdisciplinary approach to showcase innovative discoveries. It publishes research aimed at advancing the collective understanding of the cellular and molecular mechanisms underlying diseases. The journal emphasizes translational studies that translate this knowledge into therapeutic strategies. Being fully open access, the journal is accessible to all readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信