{"title":"以素数为模的汉明距离的有限对称集的集合系统","authors":"R. X. J. Liu","doi":"10.1007/s10474-025-01510-w","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\( p \\)</span> be a prime and let <span>\\( \\mathcal{D}=\\{d_1, d_2, \\dots, d_s\\} \\)</span> be a subset of <span>\\( \\left \\{ 1, 2, \\dots, p-1 \\right \\} .\\)</span>\nIf <span>\\( \\mathcal{F} \\)</span> is a Hamming symmetric family of subsets of <span>\\([n]\\)</span> such that <span>\\( \\lvert F \\bigtriangleup F' \\rvert ( \\bmod \\ p ) \\in \\mathcal{D} \\)</span> and <span>\\( n- \\lvert F \\bigtriangleup F' \\rvert ( \\bmod \\ p ) \\in \\mathcal{D} \\)</span> for any pair of distinct <span>\\( F \\)</span>, <span>\\( F' \\in \\mathcal{F} \\)</span>, then\n</p><div><div><span>$$|\\mathcal{F}| \\leq {{n-1} \\choose {s}}+ {{n-1} \\choose {s-1}}+ \\cdots + {{n-1} \\choose {0}}.$$</span></div></div><p>\nThis result can be considered as a modular version of Hegedüs's Theorem [6] about Hamming symmetric families. We also improve the above upper bound on the size of Hamming symmetric families in the non-modular version when the size of any member of <span>\\( \\mathcal{F} \\)</span> is restricted. </p></div>","PeriodicalId":50894,"journal":{"name":"Acta Mathematica Hungarica","volume":"175 1","pages":"259 - 269"},"PeriodicalIF":0.6000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Set systems with restricted symmetric sets of Hamming distances modulo a prime number\",\"authors\":\"R. X. J. Liu\",\"doi\":\"10.1007/s10474-025-01510-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\( p \\\\)</span> be a prime and let <span>\\\\( \\\\mathcal{D}=\\\\{d_1, d_2, \\\\dots, d_s\\\\} \\\\)</span> be a subset of <span>\\\\( \\\\left \\\\{ 1, 2, \\\\dots, p-1 \\\\right \\\\} .\\\\)</span>\\nIf <span>\\\\( \\\\mathcal{F} \\\\)</span> is a Hamming symmetric family of subsets of <span>\\\\([n]\\\\)</span> such that <span>\\\\( \\\\lvert F \\\\bigtriangleup F' \\\\rvert ( \\\\bmod \\\\ p ) \\\\in \\\\mathcal{D} \\\\)</span> and <span>\\\\( n- \\\\lvert F \\\\bigtriangleup F' \\\\rvert ( \\\\bmod \\\\ p ) \\\\in \\\\mathcal{D} \\\\)</span> for any pair of distinct <span>\\\\( F \\\\)</span>, <span>\\\\( F' \\\\in \\\\mathcal{F} \\\\)</span>, then\\n</p><div><div><span>$$|\\\\mathcal{F}| \\\\leq {{n-1} \\\\choose {s}}+ {{n-1} \\\\choose {s-1}}+ \\\\cdots + {{n-1} \\\\choose {0}}.$$</span></div></div><p>\\nThis result can be considered as a modular version of Hegedüs's Theorem [6] about Hamming symmetric families. We also improve the above upper bound on the size of Hamming symmetric families in the non-modular version when the size of any member of <span>\\\\( \\\\mathcal{F} \\\\)</span> is restricted. </p></div>\",\"PeriodicalId\":50894,\"journal\":{\"name\":\"Acta Mathematica Hungarica\",\"volume\":\"175 1\",\"pages\":\"259 - 269\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Hungarica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10474-025-01510-w\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Hungarica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10474-025-01510-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
让 \( p \) 是一个素数,让 \( \mathcal{D}=\{d_1, d_2, \dots, d_s\} \) 的子集 \( \left \{ 1, 2, \dots, p-1 \right \} .\)如果 \( \mathcal{F} \) 的子集的汉明对称族是什么 \([n]\) 这样 \( \lvert F \bigtriangleup F' \rvert ( \bmod \ p ) \in \mathcal{D} \) 和 \( n- \lvert F \bigtriangleup F' \rvert ( \bmod \ p ) \in \mathcal{D} \) 对于任何一对不同的 \( F \), \( F' \in \mathcal{F} \)那么,$$|\mathcal{F}| \leq {{n-1} \choose {s}}+ {{n-1} \choose {s-1}}+ \cdots + {{n-1} \choose {0}}.$$这个结果可以看作是关于Hamming对称族的heged定理[6]的模版本。我们还改进了非模版本中Hamming对称族大小的上界,当的任意成员的大小 \( \mathcal{F} \) 是受限的。
Set systems with restricted symmetric sets of Hamming distances modulo a prime number
Let \( p \) be a prime and let \( \mathcal{D}=\{d_1, d_2, \dots, d_s\} \) be a subset of \( \left \{ 1, 2, \dots, p-1 \right \} .\)
If \( \mathcal{F} \) is a Hamming symmetric family of subsets of \([n]\) such that \( \lvert F \bigtriangleup F' \rvert ( \bmod \ p ) \in \mathcal{D} \) and \( n- \lvert F \bigtriangleup F' \rvert ( \bmod \ p ) \in \mathcal{D} \) for any pair of distinct \( F \), \( F' \in \mathcal{F} \), then
This result can be considered as a modular version of Hegedüs's Theorem [6] about Hamming symmetric families. We also improve the above upper bound on the size of Hamming symmetric families in the non-modular version when the size of any member of \( \mathcal{F} \) is restricted.
期刊介绍:
Acta Mathematica Hungarica is devoted to publishing research articles of top quality in all areas of pure and applied mathematics as well as in theoretical computer science. The journal is published yearly in three volumes (two issues per volume, in total 6 issues) in both print and electronic formats. Acta Mathematica Hungarica (formerly Acta Mathematica Academiae Scientiarum Hungaricae) was founded in 1950 by the Hungarian Academy of Sciences.