关于多孔介质中非均相扩散的澄清

IF 2.9 3区 工程技术 Q2 MECHANICS
Francisco J. Valdés-Parada, Didier Lasseux
{"title":"关于多孔介质中非均相扩散的澄清","authors":"Francisco J. Valdés-Parada,&nbsp;Didier Lasseux","doi":"10.1007/s00707-024-04214-4","DOIUrl":null,"url":null,"abstract":"<div><p>The upscaling process of coupled (single- and two-species) diffusion with heterogeneous chemical reaction in homogeneous porous media is revisited in this work with several important clarifications following the article from Bourbatache et al. (Acta Mech 234: 2293-2314, 2023. https://doi.org/10.1007/s00707-023-03501-w). It is shown that the upscaled model obtained from the volume averaging method (VAM) or, equivalently, following an adjoint and Green’s formulation technique provides a closed model without any <i>a priori</i> assumption on the form of the solution for the pore-scale concentration involved in the spectral approach used in the periodic homogenization method (PHM) reported in the above reference. Through comparison with direct pore-scale simulations, the VAM model is shown to outperform the predictions of the average concentration and average flux profiles for the simple two-dimensional configuration considered in Bourbatache et al. (Acta Mech 234: 2293-2314, 2023. https://doi.org/10.1007/s00707-023-03501-w) in comparison with the model obtained from PHM in this reference. Finally, identification of the apparent effective diffusion coefficient from these pore-scale simulations, which serve as <i>in silico</i> experiments, proves that the correct dependence upon the Damkhöler number is the one predicted by the model obtained with VAM, in contradiction with the conclusion put forth in Bourbatache et al. (Acta Mech 234: 2293-2314, 2023. https://doi.org/10.1007/s00707-023-03501-w). The physical explanation lies in the corrective contribution of the reactive part to the apparent effective diffusion coefficient, which is positive and adds up to the pure intrinsic diffusive part. The discrepancy between PHM and VAM approaches is proved to originate from the choice of changes of variables in the pore-scale concentration used in the spectral approach while employing PHM.</p></div>","PeriodicalId":456,"journal":{"name":"Acta Mechanica","volume":"236 3","pages":"1697 - 1717"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clarifications about upscaling diffusion with heterogeneous reaction in porous media\",\"authors\":\"Francisco J. Valdés-Parada,&nbsp;Didier Lasseux\",\"doi\":\"10.1007/s00707-024-04214-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The upscaling process of coupled (single- and two-species) diffusion with heterogeneous chemical reaction in homogeneous porous media is revisited in this work with several important clarifications following the article from Bourbatache et al. (Acta Mech 234: 2293-2314, 2023. https://doi.org/10.1007/s00707-023-03501-w). It is shown that the upscaled model obtained from the volume averaging method (VAM) or, equivalently, following an adjoint and Green’s formulation technique provides a closed model without any <i>a priori</i> assumption on the form of the solution for the pore-scale concentration involved in the spectral approach used in the periodic homogenization method (PHM) reported in the above reference. Through comparison with direct pore-scale simulations, the VAM model is shown to outperform the predictions of the average concentration and average flux profiles for the simple two-dimensional configuration considered in Bourbatache et al. (Acta Mech 234: 2293-2314, 2023. https://doi.org/10.1007/s00707-023-03501-w) in comparison with the model obtained from PHM in this reference. Finally, identification of the apparent effective diffusion coefficient from these pore-scale simulations, which serve as <i>in silico</i> experiments, proves that the correct dependence upon the Damkhöler number is the one predicted by the model obtained with VAM, in contradiction with the conclusion put forth in Bourbatache et al. (Acta Mech 234: 2293-2314, 2023. https://doi.org/10.1007/s00707-023-03501-w). The physical explanation lies in the corrective contribution of the reactive part to the apparent effective diffusion coefficient, which is positive and adds up to the pure intrinsic diffusive part. The discrepancy between PHM and VAM approaches is proved to originate from the choice of changes of variables in the pore-scale concentration used in the spectral approach while employing PHM.</p></div>\",\"PeriodicalId\":456,\"journal\":{\"name\":\"Acta Mechanica\",\"volume\":\"236 3\",\"pages\":\"1697 - 1717\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mechanica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00707-024-04214-4\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00707-024-04214-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

根据Bourbatache et al. (Acta Mech . 234: 2293- 2314,2023)的文章,本文重新研究了均匀多孔介质中非均质化学反应耦合(单一和两种)扩散的升级过程。https://doi.org/10.1007/s00707 - 023 - 03501 w)。结果表明,采用体积平均法(VAM)或遵循伴随格林公式技术获得的放大模型提供了一个封闭模型,而无需对上述文献中周期均质法(PHM)中使用的光谱方法所涉及的孔隙尺度浓度的溶液形式进行任何先验假设。通过与直接孔隙尺度模拟的比较,表明VAM模型优于Bourbatache等人(Acta Mech 234: 2293- 2314,2023)所考虑的简单二维配置的平均浓度和平均通量剖面的预测。https://doi.org/10.1007/s00707-023-03501-w)与本文中从PHM得到的模型进行了比较。最后,从这些孔隙尺度模拟(作为硅实验)中识别出表观有效扩散系数,证明了对Damkhöler数的正确依赖是由VAM获得的模型预测的,这与Bourbatache等人(Acta Mech 234: 2293- 2314,2023)提出的结论相矛盾。https://doi.org/10.1007/s00707 - 023 - 03501 w)。物理解释在于反应部分对表观有效扩散系数的修正贡献为正,加起来等于纯粹的本征扩散部分。PHM方法与VAM方法的差异源于谱法中孔隙尺度浓度变量变化的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Clarifications about upscaling diffusion with heterogeneous reaction in porous media

The upscaling process of coupled (single- and two-species) diffusion with heterogeneous chemical reaction in homogeneous porous media is revisited in this work with several important clarifications following the article from Bourbatache et al. (Acta Mech 234: 2293-2314, 2023. https://doi.org/10.1007/s00707-023-03501-w). It is shown that the upscaled model obtained from the volume averaging method (VAM) or, equivalently, following an adjoint and Green’s formulation technique provides a closed model without any a priori assumption on the form of the solution for the pore-scale concentration involved in the spectral approach used in the periodic homogenization method (PHM) reported in the above reference. Through comparison with direct pore-scale simulations, the VAM model is shown to outperform the predictions of the average concentration and average flux profiles for the simple two-dimensional configuration considered in Bourbatache et al. (Acta Mech 234: 2293-2314, 2023. https://doi.org/10.1007/s00707-023-03501-w) in comparison with the model obtained from PHM in this reference. Finally, identification of the apparent effective diffusion coefficient from these pore-scale simulations, which serve as in silico experiments, proves that the correct dependence upon the Damkhöler number is the one predicted by the model obtained with VAM, in contradiction with the conclusion put forth in Bourbatache et al. (Acta Mech 234: 2293-2314, 2023. https://doi.org/10.1007/s00707-023-03501-w). The physical explanation lies in the corrective contribution of the reactive part to the apparent effective diffusion coefficient, which is positive and adds up to the pure intrinsic diffusive part. The discrepancy between PHM and VAM approaches is proved to originate from the choice of changes of variables in the pore-scale concentration used in the spectral approach while employing PHM.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Mechanica
Acta Mechanica 物理-力学
CiteScore
4.30
自引率
14.80%
发文量
292
审稿时长
6.9 months
期刊介绍: Since 1965, the international journal Acta Mechanica has been among the leading journals in the field of theoretical and applied mechanics. In addition to the classical fields such as elasticity, plasticity, vibrations, rigid body dynamics, hydrodynamics, and gasdynamics, it also gives special attention to recently developed areas such as non-Newtonian fluid dynamics, micro/nano mechanics, smart materials and structures, and issues at the interface of mechanics and materials. The journal further publishes papers in such related fields as rheology, thermodynamics, and electromagnetic interactions with fluids and solids. In addition, articles in applied mathematics dealing with significant mechanics problems are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信