可和性的收敛意味着高维傅里叶级数和勒贝格点

IF 0.6 3区 数学 Q3 MATHEMATICS
F. Weisz
{"title":"可和性的收敛意味着高维傅里叶级数和勒贝格点","authors":"F. Weisz","doi":"10.1007/s10474-025-01504-8","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce a new concept of Lebesgue points for higher dimensional\nfunctions. Every continuity point is a Lebesgue point and almost every\npoint is a Lebesgue point of an integrable function. Given a strictly increasing\ncontinuous function<span>\\(\\delta\\)</span>, we prove that the Fejér or Cesàro means<span>\\(\\sigma_n^{\\alpha}f\\)</span> of the Fourier\nseries of a two-dimensional function <span>\\(f\\in L_1(\\mathbb{T}^2)\\)</span> converge to <span>\\(f\\)</span> at each Lebesgue\npoint as <span>\\(n\\to \\infty\\)</span> and n is in the cone around the graph of <span>\\(\\delta\\)</span>. We also prove this\nresult for higher dimensional functions and for other summability means. This is\na generalization of the classical one-dimensional Lebesgue’s theorem for the Fejér\nmeans.</p></div>","PeriodicalId":50894,"journal":{"name":"Acta Mathematica Hungarica","volume":"175 1","pages":"270 - 285"},"PeriodicalIF":0.6000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10474-025-01504-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Convergence of summability means of higher dimensional Fourier series and Lebesgue points\",\"authors\":\"F. Weisz\",\"doi\":\"10.1007/s10474-025-01504-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We introduce a new concept of Lebesgue points for higher dimensional\\nfunctions. Every continuity point is a Lebesgue point and almost every\\npoint is a Lebesgue point of an integrable function. Given a strictly increasing\\ncontinuous function<span>\\\\(\\\\delta\\\\)</span>, we prove that the Fejér or Cesàro means<span>\\\\(\\\\sigma_n^{\\\\alpha}f\\\\)</span> of the Fourier\\nseries of a two-dimensional function <span>\\\\(f\\\\in L_1(\\\\mathbb{T}^2)\\\\)</span> converge to <span>\\\\(f\\\\)</span> at each Lebesgue\\npoint as <span>\\\\(n\\\\to \\\\infty\\\\)</span> and n is in the cone around the graph of <span>\\\\(\\\\delta\\\\)</span>. We also prove this\\nresult for higher dimensional functions and for other summability means. This is\\na generalization of the classical one-dimensional Lebesgue’s theorem for the Fejér\\nmeans.</p></div>\",\"PeriodicalId\":50894,\"journal\":{\"name\":\"Acta Mathematica Hungarica\",\"volume\":\"175 1\",\"pages\":\"270 - 285\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10474-025-01504-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Hungarica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10474-025-01504-8\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Hungarica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10474-025-01504-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在高维函数中引入了勒贝格点的新概念。每一个连续点都是一个勒贝格点,几乎每一个点都是一个可积函数的勒贝格点。给定一个严格递增的连续函数\(\delta\),我们证明了二维函数\(f\in L_1(\mathbb{T}^2)\)的傅里叶级数的fej或Cesàro means \(\sigma_n^{\alpha}f\)在每个Lebesguepoint处收敛于\(f\),因为\(n\to \infty\)和n在\(\delta\)图周围的锥上。对于高维函数和其他可和性方法,我们也证明了这个结果。这是经典一维勒贝格定理在fejsamrmeans上的推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convergence of summability means of higher dimensional Fourier series and Lebesgue points

We introduce a new concept of Lebesgue points for higher dimensional functions. Every continuity point is a Lebesgue point and almost every point is a Lebesgue point of an integrable function. Given a strictly increasing continuous function\(\delta\), we prove that the Fejér or Cesàro means\(\sigma_n^{\alpha}f\) of the Fourier series of a two-dimensional function \(f\in L_1(\mathbb{T}^2)\) converge to \(f\) at each Lebesgue point as \(n\to \infty\) and n is in the cone around the graph of \(\delta\). We also prove this result for higher dimensional functions and for other summability means. This is a generalization of the classical one-dimensional Lebesgue’s theorem for the Fejér means.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
11.10%
发文量
77
审稿时长
4-8 weeks
期刊介绍: Acta Mathematica Hungarica is devoted to publishing research articles of top quality in all areas of pure and applied mathematics as well as in theoretical computer science. The journal is published yearly in three volumes (two issues per volume, in total 6 issues) in both print and electronic formats. Acta Mathematica Hungarica (formerly Acta Mathematica Academiae Scientiarum Hungaricae) was founded in 1950 by the Hungarian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信