IF 0.8 Q2 MATHEMATICS
Wenbo Huang, Shan Li
{"title":"2-Local automorphisms and derivations of triangular matrices","authors":"Wenbo Huang,&nbsp;Shan Li","doi":"10.1007/s43036-025-00430-4","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(\\mathcal {T}\\)</span> denote the algebra of all <span>\\(2 \\times 2\\)</span> upper triangular matrices over a field <span>\\(\\mathbb {F}\\)</span>. We show that the linear space of all 2-local derivations on <span>\\(\\mathcal {T}\\)</span> decomposes as <span>\\(\\mathcal {L} = \\mathcal {D} \\oplus \\mathcal {L}_0\\)</span>, where <span>\\(\\mathcal {D}\\)</span> is the subspace of all derivations, and <span>\\(\\mathcal {L}_0\\)</span> consists of 2-local derivations vanishing on a subset of <span>\\(\\mathcal {T}\\)</span>, isomorphic to the space of functions <span>\\(f:\\mathbb {F}\\rightarrow \\mathbb {F}\\)</span> such that <span>\\(f(0)=0\\)</span>. For any 2-local automorphism <span>\\(\\Lambda \\)</span> on <span>\\(\\mathcal {T}\\)</span>, we show that there exists a unique automorphism <span>\\(\\phi \\)</span> and a 2-local automorphism <span>\\(\\Lambda _{1} \\in \\varPsi \\)</span> such that <span>\\(\\Lambda = \\phi \\Lambda _1\\)</span>, where <span>\\(\\varPsi \\)</span> is the monoid of 2-local automorphisms that act as the identity on a subset of <span>\\(\\mathcal {T}\\)</span>. Furthermore, we establish that <span>\\(\\varPsi \\)</span> is isomorphic to the monoid of injective functions from <span>\\(\\mathbb {F}^{*}\\)</span> to itself.</p></div>","PeriodicalId":44371,"journal":{"name":"Advances in Operator Theory","volume":"10 2","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Operator Theory","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43036-025-00430-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 \(\mathcal {T}\) 表示域 \(\mathbb {F}\) 上所有 \(2 \times 2\) 上三角矩阵的代数。我们证明了 \(\mathcal {T}\) 上所有 2 局部派生的线性空间分解为 \(\mathcal {L} = \mathcal {D} \oplus \mathcal {L}_0/)、其中 \(\mathcal {D}\) 是所有导数的子空间,而 \(\mathcal {L}_0\) 由在\(\mathcal {T}\) 的子集上消失的 2 局部导数组成,与函数空间 \(f.)同构:\f(0)=0\).对于任何在\(\mathcal {T}\)上的2-局部自变态\(\Lambda),我们证明存在一个唯一的自变态\(\phi\)和一个2-局部自变态\(\Lambda _{1} \in \varPsi \),使得\(\Lambda = \phi \Lambda _1\)、其中 \(\varPsi \) 是在 \(\mathcal {T}\)子集上作为同一性作用的 2 局部自动形的单元。此外,我们还确定了 \(\varPsi \) 与从\(\mathbb {F}^{*}\) 到自身的注入函数的单体同构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
2-Local automorphisms and derivations of triangular matrices

Let \(\mathcal {T}\) denote the algebra of all \(2 \times 2\) upper triangular matrices over a field \(\mathbb {F}\). We show that the linear space of all 2-local derivations on \(\mathcal {T}\) decomposes as \(\mathcal {L} = \mathcal {D} \oplus \mathcal {L}_0\), where \(\mathcal {D}\) is the subspace of all derivations, and \(\mathcal {L}_0\) consists of 2-local derivations vanishing on a subset of \(\mathcal {T}\), isomorphic to the space of functions \(f:\mathbb {F}\rightarrow \mathbb {F}\) such that \(f(0)=0\). For any 2-local automorphism \(\Lambda \) on \(\mathcal {T}\), we show that there exists a unique automorphism \(\phi \) and a 2-local automorphism \(\Lambda _{1} \in \varPsi \) such that \(\Lambda = \phi \Lambda _1\), where \(\varPsi \) is the monoid of 2-local automorphisms that act as the identity on a subset of \(\mathcal {T}\). Furthermore, we establish that \(\varPsi \) is isomorphic to the monoid of injective functions from \(\mathbb {F}^{*}\) to itself.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
55
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信