用SILAR制备CdO薄膜:退火温度对物理性能的影响

IF 2.1 4区 材料科学 Q3 CHEMISTRY, MULTIDISCIPLINARY
Tuba Çayir Taşdemirci
{"title":"用SILAR制备CdO薄膜:退火温度对物理性能的影响","authors":"Tuba Çayir Taşdemirci","doi":"10.1007/s11051-025-06274-6","DOIUrl":null,"url":null,"abstract":"<div><p>Cadmium oxide (CdO) thin film was grown on a glass substrate at room temperature using the Successive ionic layer adsorption and reaction (SILAR) method. The grown thin films were annealed at 350<sup>0</sup>C and 400<sup>0</sup>C for 30 min. Structural and optical properties of CdO thin films after annealing were examined. Analyzes were made with X-ray diffractometer (XRD) and Scanning electron microscope-Energy dispersive X-ray spectroscopy (SEM-EDAX) devices for structural properties, and UV–Vis devices for optical properties. The XRD peak intensities of CdO thin films exposed to annealing temperature increased and the crystal structure improved. The bandgap energy range decreased from 2.48 eV to 2.37 eV with the effect of annealing temperature.</p></div>","PeriodicalId":653,"journal":{"name":"Journal of Nanoparticle Research","volume":"27 4","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of CdO thin films with SILAR: Influence of annealing temperature on physical properties\",\"authors\":\"Tuba Çayir Taşdemirci\",\"doi\":\"10.1007/s11051-025-06274-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cadmium oxide (CdO) thin film was grown on a glass substrate at room temperature using the Successive ionic layer adsorption and reaction (SILAR) method. The grown thin films were annealed at 350<sup>0</sup>C and 400<sup>0</sup>C for 30 min. Structural and optical properties of CdO thin films after annealing were examined. Analyzes were made with X-ray diffractometer (XRD) and Scanning electron microscope-Energy dispersive X-ray spectroscopy (SEM-EDAX) devices for structural properties, and UV–Vis devices for optical properties. The XRD peak intensities of CdO thin films exposed to annealing temperature increased and the crystal structure improved. The bandgap energy range decreased from 2.48 eV to 2.37 eV with the effect of annealing temperature.</p></div>\",\"PeriodicalId\":653,\"journal\":{\"name\":\"Journal of Nanoparticle Research\",\"volume\":\"27 4\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanoparticle Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11051-025-06274-6\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanoparticle Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11051-025-06274-6","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

采用连续离子层吸附反应法(SILAR)在室温下在玻璃衬底上生长氧化镉(CdO)薄膜。将生长好的薄膜分别在3500C和4000C退火30 min,并对退火后的CdO薄膜的结构和光学性能进行了检测。采用x射线衍射仪(XRD)和扫描电子显微镜-能量色散x射线能谱仪(SEM-EDAX)对结构性能进行了分析,采用UV-Vis设备对光学性能进行了分析。在退火温度下,CdO薄膜的XRD峰强度增加,晶体结构改善。受退火温度的影响,带隙能量范围从2.48 eV减小到2.37 eV。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Fabrication of CdO thin films with SILAR: Influence of annealing temperature on physical properties

Fabrication of CdO thin films with SILAR: Influence of annealing temperature on physical properties

Cadmium oxide (CdO) thin film was grown on a glass substrate at room temperature using the Successive ionic layer adsorption and reaction (SILAR) method. The grown thin films were annealed at 3500C and 4000C for 30 min. Structural and optical properties of CdO thin films after annealing were examined. Analyzes were made with X-ray diffractometer (XRD) and Scanning electron microscope-Energy dispersive X-ray spectroscopy (SEM-EDAX) devices for structural properties, and UV–Vis devices for optical properties. The XRD peak intensities of CdO thin films exposed to annealing temperature increased and the crystal structure improved. The bandgap energy range decreased from 2.48 eV to 2.37 eV with the effect of annealing temperature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nanoparticle Research
Journal of Nanoparticle Research 工程技术-材料科学:综合
CiteScore
4.40
自引率
4.00%
发文量
198
审稿时长
3.9 months
期刊介绍: The objective of the Journal of Nanoparticle Research is to disseminate knowledge of the physical, chemical and biological phenomena and processes in structures that have at least one lengthscale ranging from molecular to approximately 100 nm (or submicron in some situations), and exhibit improved and novel properties that are a direct result of their small size. Nanoparticle research is a key component of nanoscience, nanoengineering and nanotechnology. The focus of the Journal is on the specific concepts, properties, phenomena, and processes related to particles, tubes, layers, macromolecules, clusters and other finite structures of the nanoscale size range. Synthesis, assembly, transport, reactivity, and stability of such structures are considered. Development of in-situ and ex-situ instrumentation for characterization of nanoparticles and their interfaces should be based on new principles for probing properties and phenomena not well understood at the nanometer scale. Modeling and simulation may include atom-based quantum mechanics; molecular dynamics; single-particle, multi-body and continuum based models; fractals; other methods suitable for modeling particle synthesis, assembling and interaction processes. Realization and application of systems, structures and devices with novel functions obtained via precursor nanoparticles is emphasized. Approaches may include gas-, liquid-, solid-, and vacuum-based processes, size reduction, chemical- and bio-self assembly. Contributions include utilization of nanoparticle systems for enhancing a phenomenon or process and particle assembling into hierarchical structures, as well as formulation and the administration of drugs. Synergistic approaches originating from different disciplines and technologies, and interaction between the research providers and users in this field, are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信