染料敏化太阳能电池用新型D -π-A结构染料的设计与分析:密度泛函理论研究

IF 2.2 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Bahaa A. Al-Fatlawe, Faeq A. AL-Temimei
{"title":"染料敏化太阳能电池用新型D -π-A结构染料的设计与分析:密度泛函理论研究","authors":"Bahaa A. Al-Fatlawe,&nbsp;Faeq A. AL-Temimei","doi":"10.1007/s10825-025-02303-8","DOIUrl":null,"url":null,"abstract":"<div><p>This study explores the electronic, optical, and electrochemical properties of novel D–π–A organic dyes with different π-bridges using DFT and TD-DFT calculations, emphasizing their potential as efficient light harvesters. Geometric analysis shows that the dyes’ bond lengths and dihedral angles support intramolecular charge transfer, light absorption, and stability. The <i>π</i>-bridge improves electronic coupling, promoting conjugation and electron mobility. Frontier molecular orbital analysis reveals HOMO and LUMO levels aligned with TiO<sub>2</sub> conduction band and the electrolyte's redox potential, ensuring efficient electron injection and dye regeneration. The dyes’ energy gaps (2.1151–2.5426 eV) enable effective visible-light absorption. Molecular orbital distribution supports charge separation for efficient donor-to-acceptor electron transfer. Global reactivity parameters indicate high stability and enhanced charge transfer capabilities. Molecular electrostatic potential and reduced density gradient analyses highlight charge distribution and non-covalent interactions that improve stability and electronic properties. UV–Vis spectra (543.021–624.762 nm) reveal enhanced light-harvesting efficiency via n → <i>π</i>* transitions enabled by the <i>π</i>-bridge. Electrochemical parameters, including oxidation potential and free energy changes, confirm their suitability for DSSCs. These dyes demonstrate significant potential for renewable energy applications, particularly in DSSCs.</p></div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":"24 2","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and analysis of novel D–π–A configuration dyes for dye-sensitized solar cells: a density functional theory study\",\"authors\":\"Bahaa A. Al-Fatlawe,&nbsp;Faeq A. AL-Temimei\",\"doi\":\"10.1007/s10825-025-02303-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study explores the electronic, optical, and electrochemical properties of novel D–π–A organic dyes with different π-bridges using DFT and TD-DFT calculations, emphasizing their potential as efficient light harvesters. Geometric analysis shows that the dyes’ bond lengths and dihedral angles support intramolecular charge transfer, light absorption, and stability. The <i>π</i>-bridge improves electronic coupling, promoting conjugation and electron mobility. Frontier molecular orbital analysis reveals HOMO and LUMO levels aligned with TiO<sub>2</sub> conduction band and the electrolyte's redox potential, ensuring efficient electron injection and dye regeneration. The dyes’ energy gaps (2.1151–2.5426 eV) enable effective visible-light absorption. Molecular orbital distribution supports charge separation for efficient donor-to-acceptor electron transfer. Global reactivity parameters indicate high stability and enhanced charge transfer capabilities. Molecular electrostatic potential and reduced density gradient analyses highlight charge distribution and non-covalent interactions that improve stability and electronic properties. UV–Vis spectra (543.021–624.762 nm) reveal enhanced light-harvesting efficiency via n → <i>π</i>* transitions enabled by the <i>π</i>-bridge. Electrochemical parameters, including oxidation potential and free energy changes, confirm their suitability for DSSCs. These dyes demonstrate significant potential for renewable energy applications, particularly in DSSCs.</p></div>\",\"PeriodicalId\":620,\"journal\":{\"name\":\"Journal of Computational Electronics\",\"volume\":\"24 2\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10825-025-02303-8\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10825-025-02303-8","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本研究通过DFT和TD-DFT计算,探讨了具有不同π桥的新型D -π-A有机染料的电子、光学和电化学性质,强调了它们作为高效光收集器的潜力。几何分析表明,染料的键长和二面角支持分子内电荷转移、光吸收和稳定性。π桥改善了电子耦合,促进了共轭作用和电子迁移率。前沿分子轨道分析表明,HOMO和LUMO水平与TiO2导带和电解质的氧化还原电位一致,确保了高效的电子注入和染料再生。染料的能隙(2.1151-2.5426 eV)使其能够有效吸收可见光。分子轨道分布支持电荷分离,有效的供体到受体电子转移。全局反应性参数表明高稳定性和增强的电荷转移能力。分子静电势和降低密度梯度分析强调电荷分布和非共价相互作用,提高稳定性和电子性能。紫外可见光谱(543.021 ~ 624.762 nm)表明,π桥使n→π*跃迁增强了光捕获效率。电化学参数,包括氧化电位和自由能的变化,证实了它们对DSSCs的适用性。这些染料显示出可再生能源应用的巨大潜力,特别是在DSSCs中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design and analysis of novel D–π–A configuration dyes for dye-sensitized solar cells: a density functional theory study

This study explores the electronic, optical, and electrochemical properties of novel D–π–A organic dyes with different π-bridges using DFT and TD-DFT calculations, emphasizing their potential as efficient light harvesters. Geometric analysis shows that the dyes’ bond lengths and dihedral angles support intramolecular charge transfer, light absorption, and stability. The π-bridge improves electronic coupling, promoting conjugation and electron mobility. Frontier molecular orbital analysis reveals HOMO and LUMO levels aligned with TiO2 conduction band and the electrolyte's redox potential, ensuring efficient electron injection and dye regeneration. The dyes’ energy gaps (2.1151–2.5426 eV) enable effective visible-light absorption. Molecular orbital distribution supports charge separation for efficient donor-to-acceptor electron transfer. Global reactivity parameters indicate high stability and enhanced charge transfer capabilities. Molecular electrostatic potential and reduced density gradient analyses highlight charge distribution and non-covalent interactions that improve stability and electronic properties. UV–Vis spectra (543.021–624.762 nm) reveal enhanced light-harvesting efficiency via n → π* transitions enabled by the π-bridge. Electrochemical parameters, including oxidation potential and free energy changes, confirm their suitability for DSSCs. These dyes demonstrate significant potential for renewable energy applications, particularly in DSSCs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Electronics
Journal of Computational Electronics ENGINEERING, ELECTRICAL & ELECTRONIC-PHYSICS, APPLIED
CiteScore
4.50
自引率
4.80%
发文量
142
审稿时长
>12 weeks
期刊介绍: he Journal of Computational Electronics brings together research on all aspects of modeling and simulation of modern electronics. This includes optical, electronic, mechanical, and quantum mechanical aspects, as well as research on the underlying mathematical algorithms and computational details. The related areas of energy conversion/storage and of molecular and biological systems, in which the thrust is on the charge transport, electronic, mechanical, and optical properties, are also covered. In particular, we encourage manuscripts dealing with device simulation; with optical and optoelectronic systems and photonics; with energy storage (e.g. batteries, fuel cells) and harvesting (e.g. photovoltaic), with simulation of circuits, VLSI layout, logic and architecture (based on, for example, CMOS devices, quantum-cellular automata, QBITs, or single-electron transistors); with electromagnetic simulations (such as microwave electronics and components); or with molecular and biological systems. However, in all these cases, the submitted manuscripts should explicitly address the electronic properties of the relevant systems, materials, or devices and/or present novel contributions to the physical models, computational strategies, or numerical algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信