面心立方金属力学行为与微观结构演变的混合三维数值模拟

IF 3.8 2区 工程技术 Q1 ENGINEERING, MECHANICAL
Xusheng Hai  (, ), Ben Fang  (, ), Tao Fang  (, ), Xiaoqiang Wang  (, ), Xiaoding Wei  (, )
{"title":"面心立方金属力学行为与微观结构演变的混合三维数值模拟","authors":"Xusheng Hai \n (,&nbsp;),&nbsp;Ben Fang \n (,&nbsp;),&nbsp;Tao Fang \n (,&nbsp;),&nbsp;Xiaoqiang Wang \n (,&nbsp;),&nbsp;Xiaoding Wei \n (,&nbsp;)","doi":"10.1007/s10409-024-24481-x","DOIUrl":null,"url":null,"abstract":"<div><p>Accurately predicting the mechanical behavior of pure metals at different radiation doses and prescribing the microstructure evolutions, such as the dislocation structures, remain challenging. This work introduces a 3D hybrid numerical simulation scheme that integrates finite element (FE) and finite difference (FD) modules. The FE module is used to implement the crystal plasticity model, while the FD module is used to solve the reaction-diffusion model regarding dislocation nucleation and transportation. Our hybrid model successfully replicates the mechanical behavior of pristine Cu single crystals and provides details of dislocation cell structures that agree with the experimental observation. Furthermore, the model effectively reflects the irradiation hardening effects for Cu single crystals and demonstrates the formation of dislocation channels and shear band type of strain localization. Our work offers an effective approach for predicting the mechanical responses and the safety evaluation of pure metals in extreme working conditions.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7109,"journal":{"name":"Acta Mechanica Sinica","volume":"41 11","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid 3D numerical simulations on mechanical behavior and microstructure evolution in face-centered cubic metals\",\"authors\":\"Xusheng Hai \\n (,&nbsp;),&nbsp;Ben Fang \\n (,&nbsp;),&nbsp;Tao Fang \\n (,&nbsp;),&nbsp;Xiaoqiang Wang \\n (,&nbsp;),&nbsp;Xiaoding Wei \\n (,&nbsp;)\",\"doi\":\"10.1007/s10409-024-24481-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Accurately predicting the mechanical behavior of pure metals at different radiation doses and prescribing the microstructure evolutions, such as the dislocation structures, remain challenging. This work introduces a 3D hybrid numerical simulation scheme that integrates finite element (FE) and finite difference (FD) modules. The FE module is used to implement the crystal plasticity model, while the FD module is used to solve the reaction-diffusion model regarding dislocation nucleation and transportation. Our hybrid model successfully replicates the mechanical behavior of pristine Cu single crystals and provides details of dislocation cell structures that agree with the experimental observation. Furthermore, the model effectively reflects the irradiation hardening effects for Cu single crystals and demonstrates the formation of dislocation channels and shear band type of strain localization. Our work offers an effective approach for predicting the mechanical responses and the safety evaluation of pure metals in extreme working conditions.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":7109,\"journal\":{\"name\":\"Acta Mechanica Sinica\",\"volume\":\"41 11\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mechanica Sinica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10409-024-24481-x\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica Sinica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10409-024-24481-x","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

准确地预测纯金属在不同辐射剂量下的力学行为和规定微观结构的演变,如位错结构,仍然是一个挑战。本文介绍了一种集成有限元(FE)和有限差分(FD)模块的三维混合数值模拟方案。FE模块用于实现晶体塑性模型,FD模块用于求解位错成核和输运的反应扩散模型。我们的混合模型成功地复制了原始Cu单晶的力学行为,并提供了与实验观察一致的位错细胞结构的细节。此外,该模型有效地反映了Cu单晶的辐照硬化效应,并证明了位错通道的形成和剪切带型应变局部化。本研究为纯金属在极端工况下的力学响应预测和安全性评价提供了一种有效的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid 3D numerical simulations on mechanical behavior and microstructure evolution in face-centered cubic metals

Accurately predicting the mechanical behavior of pure metals at different radiation doses and prescribing the microstructure evolutions, such as the dislocation structures, remain challenging. This work introduces a 3D hybrid numerical simulation scheme that integrates finite element (FE) and finite difference (FD) modules. The FE module is used to implement the crystal plasticity model, while the FD module is used to solve the reaction-diffusion model regarding dislocation nucleation and transportation. Our hybrid model successfully replicates the mechanical behavior of pristine Cu single crystals and provides details of dislocation cell structures that agree with the experimental observation. Furthermore, the model effectively reflects the irradiation hardening effects for Cu single crystals and demonstrates the formation of dislocation channels and shear band type of strain localization. Our work offers an effective approach for predicting the mechanical responses and the safety evaluation of pure metals in extreme working conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Mechanica Sinica
Acta Mechanica Sinica 物理-工程:机械
CiteScore
5.60
自引率
20.00%
发文量
1807
审稿时长
4 months
期刊介绍: Acta Mechanica Sinica, sponsored by the Chinese Society of Theoretical and Applied Mechanics, promotes scientific exchanges and collaboration among Chinese scientists in China and abroad. It features high quality, original papers in all aspects of mechanics and mechanical sciences. Not only does the journal explore the classical subdivisions of theoretical and applied mechanics such as solid and fluid mechanics, it also explores recently emerging areas such as biomechanics and nanomechanics. In addition, the journal investigates analytical, computational, and experimental progresses in all areas of mechanics. Lastly, it encourages research in interdisciplinary subjects, serving as a bridge between mechanics and other branches of engineering and the sciences. In addition to research papers, Acta Mechanica Sinica publishes reviews, notes, experimental techniques, scientific events, and other special topics of interest. Related subjects » Classical Continuum Physics - Computational Intelligence and Complexity - Mechanics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信