电线爆炸法制备氢化镁与纳米镍粉复合材料的结构、相态和形貌

IF 0.5 Q4 PHYSICS, CONDENSED MATTER
E. S. Leonova, A. V. Mostovshchikov, V. N. Kudiyarov
{"title":"电线爆炸法制备氢化镁与纳米镍粉复合材料的结构、相态和形貌","authors":"E. S. Leonova,&nbsp;A. V. Mostovshchikov,&nbsp;V. N. Kudiyarov","doi":"10.1134/S1027451024702173","DOIUrl":null,"url":null,"abstract":"<p>Hydrogen storage in metal hydrides is one of the most promising methods at present. Magnesium and its hydride, possessing high hydrogen capacity with high prevalence in the Earth’s crust, are considered the most suitable materials for hydrogen storage However, the disadvantage of magnesium hydride is its high operating temperature and slow sorption and desorption reactions. Thus, high energy must be applied to extract hydrogen from magnesium hydride. The temperature and energy of hydrogen desorption can be reduced by using catalytic additives. In this work, a nanosized nickel powder, first obtained by the method of electrical explosion of wires, was used as a catalytic additive. A composite based on magnesium hydride and nanoscale nickel powder synthesized in a planetary ball mill was considered the material under study. The amount of the added nanoscale nickel powder was 1–15 wt %. The synthesis of composites was carried out at a drum rotation frequency of 900 rpm and a duration of 120 min. The regularities of influence of synthesis parameters and composition of composites on their morphology and structural phase state were established.</p>","PeriodicalId":671,"journal":{"name":"Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques","volume":"18 1 supplement","pages":"S275 - S279"},"PeriodicalIF":0.5000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural Phase State and Morphology of Composites Based on Magnesium Hydride and Nanoscale Nickel Powder Obtained by the Electrical Wire Explosion Method\",\"authors\":\"E. S. Leonova,&nbsp;A. V. Mostovshchikov,&nbsp;V. N. Kudiyarov\",\"doi\":\"10.1134/S1027451024702173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Hydrogen storage in metal hydrides is one of the most promising methods at present. Magnesium and its hydride, possessing high hydrogen capacity with high prevalence in the Earth’s crust, are considered the most suitable materials for hydrogen storage However, the disadvantage of magnesium hydride is its high operating temperature and slow sorption and desorption reactions. Thus, high energy must be applied to extract hydrogen from magnesium hydride. The temperature and energy of hydrogen desorption can be reduced by using catalytic additives. In this work, a nanosized nickel powder, first obtained by the method of electrical explosion of wires, was used as a catalytic additive. A composite based on magnesium hydride and nanoscale nickel powder synthesized in a planetary ball mill was considered the material under study. The amount of the added nanoscale nickel powder was 1–15 wt %. The synthesis of composites was carried out at a drum rotation frequency of 900 rpm and a duration of 120 min. The regularities of influence of synthesis parameters and composition of composites on their morphology and structural phase state were established.</p>\",\"PeriodicalId\":671,\"journal\":{\"name\":\"Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques\",\"volume\":\"18 1 supplement\",\"pages\":\"S275 - S279\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1027451024702173\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S1027451024702173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

金属氢化物储氢是目前最有前途的方法之一。镁及其氢化物具有较高的储氢容量,在地壳中普遍存在,被认为是最合适的储氢材料。然而,氢化镁的缺点是工作温度高,吸附和解吸反应慢。因此,从氢化镁中提取氢必须使用高能量。使用催化添加剂可以降低氢脱附的温度和能量。在本工作中,首先用电线电爆法获得纳米级镍粉作为催化添加剂。在行星球磨机上合成了一种基于氢化镁和纳米级镍粉的复合材料。纳米级镍粉的添加量为1 ~ 15 wt %。在转鼓转速为900 rpm、转鼓时间为120 min的条件下进行复合材料的合成,建立了合成参数和复合材料组成对复合材料形貌和结构相态的影响规律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Structural Phase State and Morphology of Composites Based on Magnesium Hydride and Nanoscale Nickel Powder Obtained by the Electrical Wire Explosion Method

Structural Phase State and Morphology of Composites Based on Magnesium Hydride and Nanoscale Nickel Powder Obtained by the Electrical Wire Explosion Method

Hydrogen storage in metal hydrides is one of the most promising methods at present. Magnesium and its hydride, possessing high hydrogen capacity with high prevalence in the Earth’s crust, are considered the most suitable materials for hydrogen storage However, the disadvantage of magnesium hydride is its high operating temperature and slow sorption and desorption reactions. Thus, high energy must be applied to extract hydrogen from magnesium hydride. The temperature and energy of hydrogen desorption can be reduced by using catalytic additives. In this work, a nanosized nickel powder, first obtained by the method of electrical explosion of wires, was used as a catalytic additive. A composite based on magnesium hydride and nanoscale nickel powder synthesized in a planetary ball mill was considered the material under study. The amount of the added nanoscale nickel powder was 1–15 wt %. The synthesis of composites was carried out at a drum rotation frequency of 900 rpm and a duration of 120 min. The regularities of influence of synthesis parameters and composition of composites on their morphology and structural phase state were established.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
25.00%
发文量
144
审稿时长
3-8 weeks
期刊介绍: Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques publishes original articles on the topical problems of solid-state physics, materials science, experimental techniques, condensed media, nanostructures, surfaces of thin films, and phase boundaries: geometric and energetical structures of surfaces, the methods of computer simulations; physical and chemical properties and their changes upon radiation and other treatments; the methods of studies of films and surface layers of crystals (XRD, XPS, synchrotron radiation, neutron and electron diffraction, electron microscopic, scanning tunneling microscopic, atomic force microscopic studies, and other methods that provide data on the surfaces and thin films). Articles related to the methods and technics of structure studies are the focus of the journal. The journal accepts manuscripts of regular articles and reviews in English or Russian language from authors of all countries. All manuscripts are peer-reviewed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信