{"title":"平日条件下利用固定站弱运动和强运动记录通道连续记录进行水平与垂直谱比分析的可行性","authors":"Mustafa Senkaya","doi":"10.1007/s00024-025-03669-3","DOIUrl":null,"url":null,"abstract":"<div><p>The proposed paper assesses the feasibility of using continuous records acquired from weak and strong-motion recorder channels of permanent earthquake observation stations under calm-day conditions for the HVSR method. The analyses were conducted on 60 tri-axial ambient noise data through HN channels from strong-motion recorders and BH, HH (or EH) channels from weak-motion recorders from 25 stations belonging to various soil and topography classes in the INGV network of Italy. The accuracy and reliability of the proposed HVSR curves were evaluated by benchmarking them with predefined original HVSR curves for each station, using statistical metrics such as the Pearson correlation coefficient and mean absolute error (MAE). The findings demonstrate that weak-motion recorder channels, especially HH and EH, acquire ambient noise, which serves as the primary data for the HVSR method, with higher PSD levels than strong-motion channels due to their inherently lower self-noise threshold. Therefore, while HVSR curves derived through BH channels indicate an average correlation of 84% and MAE of 12%, HH-EH channels demonstrate 91% and %12, respectively. Conversely, HN channels exhibit lower correlation (28%) and higher MAE (31%). Furthermore, topography and soil class influence PSD values, with T1 and C classes exhibiting the highest levels. However, variations in performance across different topographic and soil classes are less pronounced. The analyses suggest that the channel type plays a more critical role in HVSR analysis. This finding highlights the importance of selecting the appropriate channel for accurate HVSR analysis using permanent stations.</p></div>","PeriodicalId":21078,"journal":{"name":"pure and applied geophysics","volume":"182 2","pages":"537 - 555"},"PeriodicalIF":1.9000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00024-025-03669-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Feasibility of Utilizing Continuous Records from Weak And Strong-Motion Recorder Channels of Permanent Stations for Horizontal To Vertical Spectral Ratio (HVSR) Analysis During Calm-Day Conditions\",\"authors\":\"Mustafa Senkaya\",\"doi\":\"10.1007/s00024-025-03669-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The proposed paper assesses the feasibility of using continuous records acquired from weak and strong-motion recorder channels of permanent earthquake observation stations under calm-day conditions for the HVSR method. The analyses were conducted on 60 tri-axial ambient noise data through HN channels from strong-motion recorders and BH, HH (or EH) channels from weak-motion recorders from 25 stations belonging to various soil and topography classes in the INGV network of Italy. The accuracy and reliability of the proposed HVSR curves were evaluated by benchmarking them with predefined original HVSR curves for each station, using statistical metrics such as the Pearson correlation coefficient and mean absolute error (MAE). The findings demonstrate that weak-motion recorder channels, especially HH and EH, acquire ambient noise, which serves as the primary data for the HVSR method, with higher PSD levels than strong-motion channels due to their inherently lower self-noise threshold. Therefore, while HVSR curves derived through BH channels indicate an average correlation of 84% and MAE of 12%, HH-EH channels demonstrate 91% and %12, respectively. Conversely, HN channels exhibit lower correlation (28%) and higher MAE (31%). Furthermore, topography and soil class influence PSD values, with T1 and C classes exhibiting the highest levels. However, variations in performance across different topographic and soil classes are less pronounced. The analyses suggest that the channel type plays a more critical role in HVSR analysis. This finding highlights the importance of selecting the appropriate channel for accurate HVSR analysis using permanent stations.</p></div>\",\"PeriodicalId\":21078,\"journal\":{\"name\":\"pure and applied geophysics\",\"volume\":\"182 2\",\"pages\":\"537 - 555\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00024-025-03669-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"pure and applied geophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00024-025-03669-3\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"pure and applied geophysics","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00024-025-03669-3","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Feasibility of Utilizing Continuous Records from Weak And Strong-Motion Recorder Channels of Permanent Stations for Horizontal To Vertical Spectral Ratio (HVSR) Analysis During Calm-Day Conditions
The proposed paper assesses the feasibility of using continuous records acquired from weak and strong-motion recorder channels of permanent earthquake observation stations under calm-day conditions for the HVSR method. The analyses were conducted on 60 tri-axial ambient noise data through HN channels from strong-motion recorders and BH, HH (or EH) channels from weak-motion recorders from 25 stations belonging to various soil and topography classes in the INGV network of Italy. The accuracy and reliability of the proposed HVSR curves were evaluated by benchmarking them with predefined original HVSR curves for each station, using statistical metrics such as the Pearson correlation coefficient and mean absolute error (MAE). The findings demonstrate that weak-motion recorder channels, especially HH and EH, acquire ambient noise, which serves as the primary data for the HVSR method, with higher PSD levels than strong-motion channels due to their inherently lower self-noise threshold. Therefore, while HVSR curves derived through BH channels indicate an average correlation of 84% and MAE of 12%, HH-EH channels demonstrate 91% and %12, respectively. Conversely, HN channels exhibit lower correlation (28%) and higher MAE (31%). Furthermore, topography and soil class influence PSD values, with T1 and C classes exhibiting the highest levels. However, variations in performance across different topographic and soil classes are less pronounced. The analyses suggest that the channel type plays a more critical role in HVSR analysis. This finding highlights the importance of selecting the appropriate channel for accurate HVSR analysis using permanent stations.
期刊介绍:
pure and applied geophysics (pageoph), a continuation of the journal "Geofisica pura e applicata", publishes original scientific contributions in the fields of solid Earth, atmospheric and oceanic sciences. Regular and special issues feature thought-provoking reports on active areas of current research and state-of-the-art surveys.
Long running journal, founded in 1939 as Geofisica pura e applicata
Publishes peer-reviewed original scientific contributions and state-of-the-art surveys in solid earth and atmospheric sciences
Features thought-provoking reports on active areas of current research and is a major source for publications on tsunami research
Coverage extends to research topics in oceanic sciences
See Instructions for Authors on the right hand side.