一种新型氯噻嗪多晶型的喷雾干燥控制分离

Alice Parkes, Enrico Spoletti, John O'Reilly, Matteo Lusi, Ahmad Ziaee and Emmet O'Reilly
{"title":"一种新型氯噻嗪多晶型的喷雾干燥控制分离","authors":"Alice Parkes, Enrico Spoletti, John O'Reilly, Matteo Lusi, Ahmad Ziaee and Emmet O'Reilly","doi":"10.1039/D4PM00286E","DOIUrl":null,"url":null,"abstract":"<p >This study outlines a route to producing a novel polymorphic form of chlorothiazide (CTZ). CTZ was spray dried using three different atomising gas flowrate settings to determine whether it has any effect on the solid-state of CTZ. At a lower atomising gas flowrate, a new form of CTZ, CTZ form IV, was obtained in pure form, whereas at the highest atomising gas flowrate, a mixture of CTZ form I and CTZ form IV was obtained. The morphology of CTZ form I was prism-shaped, and the new form, CTZ form IV, consisted of spherical clusters, some of which were porous and some non-porous. As a result of the rapid drying process, acetone was trapped within the porous clusters and could be released by milling. CTZ form IV has been shown to be stable at room temperature and below 40% relative humidity (RH); however, after 1 week of stability under accelerated conditions of 40 °C/75% RH, CTZ form IV converted to CTZ form I. Also, at high temperatures between 150 °C and 175 °C, CTZ form IV converted to form I, with the simultaneous release of acetone upon its morphology change. This study demonstrates how spray drying can be useful to discover new forms of APIs by a controlled drying process.</p>","PeriodicalId":101141,"journal":{"name":"RSC Pharmaceutics","volume":" 2","pages":" 398-412"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/pm/d4pm00286e?page=search","citationCount":"0","resultStr":"{\"title\":\"Controlled isolation of a novel polymorphic form of chlorothiazide by spray drying†\",\"authors\":\"Alice Parkes, Enrico Spoletti, John O'Reilly, Matteo Lusi, Ahmad Ziaee and Emmet O'Reilly\",\"doi\":\"10.1039/D4PM00286E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This study outlines a route to producing a novel polymorphic form of chlorothiazide (CTZ). CTZ was spray dried using three different atomising gas flowrate settings to determine whether it has any effect on the solid-state of CTZ. At a lower atomising gas flowrate, a new form of CTZ, CTZ form IV, was obtained in pure form, whereas at the highest atomising gas flowrate, a mixture of CTZ form I and CTZ form IV was obtained. The morphology of CTZ form I was prism-shaped, and the new form, CTZ form IV, consisted of spherical clusters, some of which were porous and some non-porous. As a result of the rapid drying process, acetone was trapped within the porous clusters and could be released by milling. CTZ form IV has been shown to be stable at room temperature and below 40% relative humidity (RH); however, after 1 week of stability under accelerated conditions of 40 °C/75% RH, CTZ form IV converted to CTZ form I. Also, at high temperatures between 150 °C and 175 °C, CTZ form IV converted to form I, with the simultaneous release of acetone upon its morphology change. This study demonstrates how spray drying can be useful to discover new forms of APIs by a controlled drying process.</p>\",\"PeriodicalId\":101141,\"journal\":{\"name\":\"RSC Pharmaceutics\",\"volume\":\" 2\",\"pages\":\" 398-412\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/pm/d4pm00286e?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC Pharmaceutics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/pm/d4pm00286e\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Pharmaceutics","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/pm/d4pm00286e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究概述了一种新的多晶形式氯噻嗪(CTZ)的生产途径。使用三种不同的雾化气体流量设置喷雾干燥CTZ,以确定它是否对CTZ的固态有任何影响。在较低的雾化气体流量下,可以得到一种新的CTZ形式,即CTZ形式IV,而在最高的雾化气体流量下,可以得到CTZ形式I和CTZ形式IV的混合物。CTZ型I的形貌为棱柱状,而新的CTZ型IV由球状团簇组成,其中一些是多孔的,一些是无孔的。由于快速干燥过程,丙酮被困在多孔簇中,可以通过研磨释放出来。CTZ形式IV在室温和低于40%相对湿度(RH)时是稳定的;然而,在40°C/75% RH的加速条件下稳定1周后,CTZ IV型转化为CTZ I型。在150°C至175°C的高温下,CTZ IV型转化为CTZ I型,在其形态变化的同时释放丙酮。这项研究证明了喷雾干燥如何通过控制干燥过程来发现新形式的原料药。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Controlled isolation of a novel polymorphic form of chlorothiazide by spray drying†

Controlled isolation of a novel polymorphic form of chlorothiazide by spray drying†

This study outlines a route to producing a novel polymorphic form of chlorothiazide (CTZ). CTZ was spray dried using three different atomising gas flowrate settings to determine whether it has any effect on the solid-state of CTZ. At a lower atomising gas flowrate, a new form of CTZ, CTZ form IV, was obtained in pure form, whereas at the highest atomising gas flowrate, a mixture of CTZ form I and CTZ form IV was obtained. The morphology of CTZ form I was prism-shaped, and the new form, CTZ form IV, consisted of spherical clusters, some of which were porous and some non-porous. As a result of the rapid drying process, acetone was trapped within the porous clusters and could be released by milling. CTZ form IV has been shown to be stable at room temperature and below 40% relative humidity (RH); however, after 1 week of stability under accelerated conditions of 40 °C/75% RH, CTZ form IV converted to CTZ form I. Also, at high temperatures between 150 °C and 175 °C, CTZ form IV converted to form I, with the simultaneous release of acetone upon its morphology change. This study demonstrates how spray drying can be useful to discover new forms of APIs by a controlled drying process.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信